
Draft for Review

Intel® Platform Innovation Framework
for EFI

Recovery Specification

Draft for Review

Version 0.9

September 16, 2003



Recovery Specification Draft for Review

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright  2001–2003, Intel Corporation.

Intel order number xxxxxx-001



Draft for Review

Version 0.9 September 2003 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03



Recovery Specification Draft for Review

iv September 2003 Version 0.9



Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction ........................................................................................................7
Overview................................................................................................................................7
Target Audience ....................................................................................................................7
Scope ....................................................................................................................................7
Goals .....................................................................................................................................7
Required Features .................................................................................................................8
Conventions Used in This Document.....................................................................................8

Data Structure Descriptions ..........................................................................................8
Procedure Descriptions.................................................................................................9
PPI Descriptions ...........................................................................................................9
Pseudo-Code Conventions .........................................................................................10
Typographic Conventions ...........................................................................................10

2 Design Discussion...........................................................................................13
Terms ..................................................................................................................................13
Definition of “Recovery” .......................................................................................................13
Steps in the Recovery Sequence.........................................................................................14

Steps in the Recovery Sequence ................................................................................14
Detecting That Recovery Is Needed............................................................................14
PEI Recovery Phase ...................................................................................................15
Finding and Loading the Recovery DXE Image...........................................................17

Finding the Recovery DXE Image: Overview................................................17
Recovery Sequence .....................................................................................18
Recovery PPIs..............................................................................................19

DXE Recovery Phase and After ..................................................................................20
DXE Recovery Phase and After....................................................................20
Recovering the Framework Firmware...........................................................21
Post-Recovery Operations............................................................................21

3 Code Definitions...............................................................................................23
Introduction..........................................................................................................................23
Recovery Module PPI ..........................................................................................................24

EFI_PEI_RECOVERY_MODULE_PPI........................................................................24
EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule().................................26

Device Recovery Module PPI ..............................................................................................27
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.........................................................27
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetNumberRecoveryCapsules() ....29
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsuleInfo().............30
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule() ................32

Device Recovery Block I/O PPI............................................................................................33
Device Recovery Block I/O PPI...................................................................................33
EFI_PEI_RECOVERY_BLOCK_IO_PPI .....................................................................33
EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()......................35
EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo() .........................36
EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks() ...............................................38



Recovery Specification Draft for Review

vi September 2003 Version 0.9

Figures
Figure 2-1. Platform Module Dispatch in PEI ......................................................................16

Tables
Table 2-1. Steps in the Recovery Sequence..................................................................14
Table 2-2. Device Recovery Module Functions .............................................................19
Table 2-3. Device Recovery Block I/O Functions...........................................................20
Table 3-1. Organization of the Code Definitions Section ...............................................23



Draft for Review

Version 0.9 September 2003 7

1
Introduction

Overview
This specification defines the recovery architecture and the core code and services that are required
for an implementation of the Intel® Platform Innovation Framework for EFI (hereafter referred to
as the “Framework”). Recovery is the automatic process of updating a “bad” version of a
Framework firmware with a good version. This specification does the following:

• Describes the Framework recovery philosophy and the generic high-level recovery flow
• Explains the architectural PEIM-to-PEIM Interfaces (PPIs) for recovery that are published by

PEIMs
• Provides code definitions for the platform-independent PPIs that are architecturally required by

the Intel® Platform Innovation Framework for EFI Architecture Specification and that are used
during the Loading the Recovery DXE Image phase

Target Audience
This document is targeted at system software developers who are evaluating the Framework for
their product. It is also intended for developers who need to port or leverage this infrastructure for
their platform.

This document is platform independent.

Scope
Note the following limitations in the scope of this specification:

• This document is hardware neutral and does not discuss platform-specific hardware or their
associated modules.

• This document describes only the platform-independent recovery modules that any Framework
PEI interface would need to provide. It does not describe all of the possible PEIMs that might
be required to produce this functionality.

• This document addresses only the PEIM-to-PEIM Interfaces (PPIs) used during the Loading
the Recovery DXE Image phase.

Goals
The goal of this design is to allow the creation of portable modules that subscribe to standard-based
interfaces. The recovery PEIM contains platform-specific policy decisions, such as where to look
for the recovery capsule, but these decisions are internal to an implementation and opaque to the
architecture.



Recovery Specification Draft for Review

8 September 2003 Version 0.9

Required Features
This architecture requires the existence of some platform modules to initialize the system fabric so
that the recovery code can run. The minimal requirements include the following:

• Useable system memory
• A means by which to enable the hardware interface to the device(s) containing a recovery

capsule

These devices may have other requirements, which are outside the scope of this document.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.



Draft for Review Introduction

Version 0.9 September 2003 9

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

PPI Descriptions
A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name: The formal name of the PPI.

Summary: A brief description of the PPI.

GUID: The 128-bit Globally Unique Identifier (GUID) for the PPI.

PPI Interface Structure: A “C-style” procedure template defining the PPI calling
structure.

Parameters: A brief description of each field in the PPI structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller
should be aware.

Related Definitions: The type declarations and constants that are used only by
this interface.

Status Codes Returned: A description of any codes returned by the interface. The PPI
is required to implement any status codes listed in this table.
Additional error codes may be returned, but they will not be
tested by standard compliance tests, and any software that uses
the procedure cannot depend on any of the extended error codes
that an implementation may provide.



Recovery Specification Draft for Review

10 September 2003 Version 0.9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not

active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.



Draft for Review Introduction

Version 0.9 September 2003 11

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm


Recovery Specification Draft for Review

12 September 2003 Version 0.9



Draft for Review

Version 0.9 September 2003 13

2
Design Discussion

Terms
Following are definitions of the basic terms that are used throughout this specification:

crisis recovery

Setting the boot mode to recovery based on the detection of some illegal state.

forced recovery

Setting the boot mode to recovery based on the detection of some user-initiated signal, such
as an installed jumper.

MBR

Master Boot Record. The data structure that resides on the first sector of a hard disk and
defines the partitions on the disk.

recovery

The automatic process of updating a “bad” version of a Framework firmware with a good
version. See the next topic, Definition of “Recovery”, for more details.

Definition of “Recovery”
By way of introduction, the concept of recovery should first be described. For most firmware
systems, the code located in the persistent baseboard storage, such as flash memory, is decomposed
into the following two regimes:

• The recovery block
• The nonrecovery block

The recovery block code is usually stored in some hardware-protected region of the baseboard flash
part and is responsible for receiving the reset vector when a system is restarted.

Traditionally, legacy BIOSs have taken one of two approaches:

• The recovery block is a complete, stripped-down BIOS used only during recovery.
• The recovery block has a dual personality: normal and recovery operation.

Both approaches leave noncritical hardware in a benign state and critical hardware programmed
with “safe” values. The Framework architecture allows both approaches. Recovery mode requires
that all code accesses must remain within the recovery block, while normal mode allows accesses to
the nonrecovery block. Additionally, the recovery block can be updated in a fault-tolerant manner
or hardware protected from ever being updated. Again the Framework architecture allows both
approaches.



Recovery Specification Draft for Review

14 September 2003 Version 0.9

Steps in the Recovery Sequence

Steps in the Recovery Sequence
The global Framework recovery follows a series of architectural steps, which are flexible to
accommodate original equipment manufacturer (OEM) design criteria or preferences. The table
below lists the steps in the recovery sequence.

Table 2-1. Steps in the Recovery Sequence

Step Description See Section…

1 Detect that recovery is needed Detecting That Recovery Is Needed

2 Complete the Pre-EFI Initialization (PEI)
recovery phase

PEI Recovery Phase

3 Find the recovery Driver Execution
Environment (DXE) image

Finding and Loading the Recovery DXE Image:
Overview

4 Load the recovery DXE image Finding and Loading the Recovery DXE Image:
Recovery Sequence

5 Complete the DXE recovery phase Finding and Loading the Recovery DXE Image
and
DXE Recovery Phase and After

6 Load the “recovery operating system” DXE Recovery Phase and After

7 Load the recovery application DXE Recovery Phase and After

8 Recover the Framework firmware Recovering the Framework Firmware

Detecting That Recovery Is Needed
The PEI Dispatcher starts dispatching PEIMs in the normal manner. During this process, a PEIM
determines that recovery is warranted. This detection may be due to a platform-specific module
detecting whether a recovery condition should be engendered or “forced” based upon some user
input, such as a jumper setting detected through a General Purpose I/O (GPIO) input.

There are also architectural reasons for going into recovery, such as environmental factors. In the
case of the Intel® Itanium® processor family, an environmental factor for engendering a recovery
would occur if there were no Processor Abstraction Layer B (PAL-B) revisions that matched the
present processor revisions.

In the case of a flash update, a recovery would need to occur if a power failure occurs while the
nonrecovery portion of the flash part is in the process of being updated and does not finish. These
latter cases are characterized under the classification crisis recovery. Other “crisis recovery”
instances include the following:

• Modules not passing some integrity checks, such as signature or checksum
• A series of errors when initializing hardware

The hardware case would also engender a crisis recovery possibly because the recovery boot is
usually a simple, conservative boot-strap much in the same sense as the “safe mode” boot of
operating systems. Regardless of the reason, the PEIM initiates the recovery action by setting the
BOOT_IN_RECOVERY_MODE bit (see the PEI CIS for the definition).



Draft for Review Design Discussion

Version 0.9 September 2003 15

PEI Recovery Phase

NOTE
This section describes only the platform-independent recovery modules that any Framework PEI
implementation would need to provide. It does not describe all of the possible PEIMs that might be
required to affect this functionality.

The setting of the BOOT_IN_RECOVERY_MODE bit notifies the PEI Dispatcher to transition to
recovery mode. The PEI Dispatcher clears out the list of PEIMs that have been dispatched and
restarts the dispatch of PEIMs.

The following PEIMs need to have the FFS_ATTRIBUTE_RECOVERY bit (Bit 0) set in the
PEIM’s Firmware File System (FFS) header (EFI_FFS_FILE_HEADER):

• PEIMs that require different actions in recovery mode than in normal mode
• PEIMs that are known to be required for recovery mode

These modules, along with the Security (SEC) start-up code and the PEI Foundation, make up the
recovery block.

The PEI Dispatcher starts searching for PEIMs to invoke and invokes only those PEIMs that are
actually marked as being for recovery dispatch. These PEIMs might serve a dual purpose for the
normal boot, such as having just one PEIM for memory initialization. However, when these PEIMs
detect that the boot mode variable is set to recovery, they should perform only the minimal
behavior. This sharing is not architectural—it is an implementation artifact to save flash storage
space. Unshared recovery PEIM-to-PEIM Interfaces (PPIs) return without any action taken in
nonrecovery environments. Following is the intent of the platform-specific PEIMs:

• Alerting the PEI Foundation of the recovery condition
• Initializing enough of the platform I/O complex and memory such that the PPIs designated in

this document and related documents can run

The modules marked recovery dispatch can have Interface Import Table references to nonrecovery
PPIs. The PEI Dispatcher automatically includes the PEIMs containing these PPIs as recovery
PEIMs. These referenced nonrecovery PEIMs need to be stored in the boot block to ensure that all
required modules are in a secure, uncorruptible area. This requirement implies that, during a normal
update, a PEIM that is newly referenced by recovery code and that is in a non-boot-block area must
migrate to the boot block.

Note that PEIMs can alter their behavior in several ways based on the
BOOT_IN_RECOVERY_MODE bit:

• Perform normally or no behavior change. This behavior is typical of support modules.
• Perform no action. This behavior is typical for noncritical hardware. Examples are nonrecovery

modules.
• Perform minimal configuration. This behavior is typical of critical hardware. Memory

initialization is an example.
• Enable functionality. This behavior is typical of modules that are required only for recovery.

The actions taken by the PEIMs are both platform and module specific and are outside the scope of
this document.



Recovery Specification Draft for Review

16 September 2003 Version 0.9

The figure below shows how platform modules are dispatched in the PEI phase.

Start

Initialize the PEI
Foundation. Boot
mode normal.

Is boot
mode equal
to recovery?

Find next PEIM
and execute

Is returned
boot mode
equal to
recovery?

Find next PEIM
and execute

Is the PEIM
marked for
recovery?

Execute the
PEIM.

Set boot mode
equal to recovery.
Save boot mode
in nonvolatile
storage.

Reset system

Initialize the PEI
Foundation. Boot
mode recovery.

Have we
executed all
modules?

Have we
executed all
modules?

Execute the
DXE IPL PEIM.

no

yes

no

no

no

no

yes

yesyes

yes

Execute the
recovery PEIM.

Execute the
DXE IPL PEIM.

Figure 2-1. Platform Module Dispatch in PEI



Draft for Review Design Discussion

Version 0.9 September 2003 17

See the indicated specifications for code definitions of the following:

• BOOT_IN_RECOVERY_MODE: Intel® Platform Innovation Framework for EFI Pre-EFI
Initialization Core Interface Specification (PEI CIS)

• EFI_FFS_FILE_HEADER: Intel® Platform Innovation Framework for EFI Firmware File
System Specification

Finding and Loading the Recovery DXE Image

Finding the Recovery DXE Image: Overview
The PEI Dispatcher specifically invokes the DXE Initial Program Load (IPL) PEIM, regardless of
normal or recovery mode. The DXE IPL PEIM detects that a recovery is in process and invokes a
recovery-specific PPI, the Recovery Module PPI. The Recovery Module PPI,
EFI_PEI_RECOVERY_MODULE_PPI, does the following:

• Loads a binary capsule that includes a recovery DXE image into memory
• Updates the Hand-Off Block (HOB) table with the DXE firmware volume

See Code Definitions for the PPIs that are needed to load the DXE phase.

Note that the Recovery Module PPI is device and content neutral. The DXE IPL PEIM uses the
Recovery Module PPI to load a DXE image and invokes the DXE image normally. The DXE IPL
PEIM does not know or care about the capsule’s internal structure or from which device the capsule
was loaded.

The internals of the recovery PEIM normally fall within four phases:

• Searching the supported devices for recovery capsules
• Deciding which capsule to load
• Loading the capsule into memory
• Loading the resulting DXE firmware volume

The Recovery Module PPI encompasses the first three phases and the DXE IPL PEIM encompasses
the last phase. See the next topic, Recovery Sequence: Detailed Steps, for the details of these four
phases.



Recovery Specification Draft for Review

18 September 2003 Version 0.9

Recovery Sequence
The normal, nonrecovery sequence is that after completion of the PEI phase, the PEI Dispatcher
specifically invokes the DXE Initial Program Load (IPL) PEIM. The recovery sequence is identical
to the nonrecovery sequence in that the PEI Dispatcher also specifically invokes the DXE IPL
PEIM. After invoking the DXE IPL PEIM, the recovery sequence is as follows:

1. The DXE IPL PEIM detects that a recovery is in process, searches for the Recovery Module
PPI, and invokes the recovery function
EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule().

2. EFI_PEI_RECOVERY_MODULE_PPI searches for one or more instances of the Device
Recovery Module PPI, EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. For each instance
found, the
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetNumberRecoveryCapsules()
function is invoked to determine the following:
• The number of recovery DXE capsules detected by the specified device
• The maximum buffer size required to load a capsule

3. EFI_PEI_RECOVERY_MODULE_PPI then decides the following:

• The device search order, if more than one Device Recovery Module PPI was discovered
• The individual search order, if the device reported more than one recovery DXE capsule

was found generating a search order list
4. EFI_PEI_RECOVERY_MODULE_PPI invokes the device recovery function

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() to load a
capsule that includes a recovery DXE image into memory. The capsule that is returned from the
device recovery module is a capsule that contains the recovery DXE image.

5. The EFI_PEI_RECOVERY_MODULE_PPI security does the following:

• Verifies the capsule
• Generates a data Hand-Off Block (HOB) entry for a security failure
• Tries the next entry in the search order list

6. Once a valid capsule has been loaded, EFI_PEI_RECOVERY_MODULE_PPI does the
following:
• Decomposes the capsule and updates the HOB table with the recovery DXE firmware

volume information. The path parameters are assumed to be redundant for recovery. The
Setup parameters are either redundant or fixed.

• Invalidates all HOB entries for updateable firmware volume entries.

The DXE capsule that is loaded by the Device Recovery Module PPI makes no assumptions about
contents or format other than assuming that the recovery DXE image is somewhere in the returned
capsule.

The following subsections describe the different recovery PPIs.



Draft for Review Design Discussion

Version 0.9 September 2003 19

Recovery PPIs

Recovery Module PPI
The Recovery Module PPI, EFI_PEI_RECOVERY_MODULE_PPI, invokes the Device Recovery
Module PPI EFI_PEI_DEVICE_RECOVERY_MODULE_PPI to do the following:

• Determine the number of DXE recovery capsules found by each device
• Determine capsule information
• Load a specific DXE recovery capsule from the indicated device
• Determine the device load order

The capsule is security verified and decomposed and the HOB table is updated with the DXE
recovery firmware volume.

There are two general categories of recovery PPIs:

• Device recovery PPI
• Device recovery block I/O PPI

The Device Recovery Module PPI is device neutral. The Device Recovery Block I/O PPI is device
specific and used to access the physical media. The following subsections describe the PPI
associated with each category. See Code Definitions for the definitions of these PPIs.

Device Recovery Module PPI
The table below lists the device recovery functions in the Device Recovery Module PPI,
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.

Table 2-2. Device Recovery Module Functions

Function Description

GetNumberRecoveryCapsules() Scans the devices that are supported by the PPI for DXE recovery
capsules and reports the number found. The internal ordering should
reflect the priority in the load order, with the highest priority capsule number
set to one and the lowest priority number set to N.

GetRecoveryCapsuleInfo() Provides the size of the indicated capsule and a CapsuleType
Globally Unique Identifier (GUID). The recovery module uses this
information to allow an alternate priority scheme based on the
CapsuleType information.

LoadRecoveryCapsule() Loads the indicated DXE recovery capsule instance and returns a capsule
with the actual number of bytes loaded.



Recovery Specification Draft for Review

20 September 2003 Version 0.9

Device Recovery Block I/O PPI
The Device Recovery Block I/O PPI, EFI_PEI_RECOVERY_BLOCK_IO_PPI, differs from the
Device Recovery Module PPI in that the Device Recovery Block I/O PPI is used for physical media
access. The Device Recovery Module PPI uses this PPI to search for capsules. This PPI is included
with the recovery PEIMs because a block I/O is the most common recovery media.

The table below lists the functions in the Device Recovery Block I/O PPI.

Table 2-3. Device Recovery Block I/O Functions

Function Description

GetNumberOfBlockDevices() Returns the number of block I/O devices supported. There is no ordering
priority.

GetBlockDeviceMediaInfo() Indicates the type of block I/O device found, such as a legacy floppy or
CD-ROM. The block size and last block number are also returned.

ReadBlocks() Reads the indicated block I/O device starting at the given logical block
address (LBA) and for buffer size/block size.

DXE Recovery Phase and After

DXE Recovery Phase and After
The recovery capsule that is shadowed to memory contains one of the following:

• The DXE Foundation and a complement of DXE drivers sufficient to initialize enough of the
system to invoke a second stage loader

• A full set of the DXE Foundation and DXE drivers sufficient to initialize enough of the system
to invoke the operating system and/or a Framework application

• A full set of the DXE Foundation and DXE drivers and an EFI application to update firmware
volumes

The operating system or the Framework application may reside on a device other than the one from
which the recovery DXE was loaded.

The DXE IPL PEIM invokes the DXE Dispatcher that was loaded from the recovery capsule in the
normal fashion. The DXE Dispatcher starts processing the DXE modules in the recovery capsule.
Control is passed to the boot loader module in a normal fashion. There are two architectural paths
that can be implemented at this point:

• Booting an operating system
• Booting to a Framework application

Both architectures are valid but the associated modules are mutually exclusive. Booting an
operating system and executing a recovery application under the operating system require that any
platform-specific protocols be runtime interfaces. Booting a Framework application and not an
operating system requires the platform-specific protocols to be boot service interfaces.

The following subsections list additional requirements for recovering the Framework firmware or
completing other post-recovery operations.



Draft for Review Design Discussion

Version 0.9 September 2003 21

Recovering the Framework Firmware
The nonrecovery blocks need to be updated in such a manner that the recovery application “calls
back” to the recovery DXE modules for any platform-specific hardware manipulation. This
callback ensures that the recovery application is platform neutral. Note that the recovery may
process many firmware volumes to update both the baseboard platform and add-in cards.

Post-Recovery Operations
After a new Framework firmware has been installed, the system needs to be rebooted for the
recovered firmware to execute. However, prior to the reboot, other cleanup operations may be
required.



Recovery Specification Draft for Review

22 September 2003 Version 0.9



Draft for Review

Version 0.9 September 2003 23

3
Code Definitions

Introduction
This section contains the definitions of the platform-independent PPIs that are required for all
implementations of the Framework. The table below explains the organization of this section and
lists the PPIs that are defined in this section.

Table 3-1. Organization of the Code Definitions Section

Section Summary PPI Definition

Recovery Module
PPI

Describes the main Recovery
Module PPI.

EFI_PEI_RECOVERY_MODULE_PPI

Device Recovery
Module PPI

Describes the Device Recovery
Module PPI.

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI

Device Recovery
Block I/O PPI

Describes the Device Recovery
Block I/O PPI. This section is
device specific and addresses the
most common form of recovery
media—block I/O devices such as
legacy floppy, CD-ROM, or IDE
devices.

EFI_PEI_RECOVERY_BLOCK_IO_PPI

This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in “Related Definitions” of the parent protocol or function definition:

• EFI_PEI_BLOCK_IO_MEDIA

• EFI_PEI_BLOCK_DEVICE_TYPE

• EFI_PEI_LBA



Recovery Specification Draft for Review

24 September 2003 Version 0.9

Recovery Module PPI

EFI_PEI_RECOVERY_MODULE_PPI

Summary
Finds and loads the recovery files.

GUID
#define EFI_PEI_RECOVERY_MODULE_PPI \
{0xFB6D9542, 0x612D, 0x4f45, 0x87, 0x2F, 0x5C, 0xFF, 0x52, 0xE9,
0x3D, 0xCF}

PPI Interface Structure
typedef struct _EFI_PEI_RECOVERY_MODULE_PPI {

EFI_PEI_LOAD_RECOVERY_CAPSULE LoadRecoveryCapsule;
} EFI_PEI_RECOVERY_MODULE_PPI;

Parameters
LoadRecoveryCapsule

Loads a DXE binary capsule into memory.

Description
This module has many roles and is responsible for the following:

1. Calling the driver recovery PPI
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetNumberRecoveryCapsules() to
determine if one or more DXE recovery entities exist.

2. If no capsules exist, then performing appropriate error handling.

3. Allocating a buffer of MaxRecoveryCapsuleSize as determined by
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.GetNumberRecoveryCapsules() or
larger.

4. Determining the policy in which DXE recovery capsules are loaded.

5. Calling the driver recovery PPI
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() for capsule
number x.

6. If the load failed, performing appropriate error handling.

7. Performing security checks for a loaded DXE recovery capsule.

8. If the security checks failed, then logging the failure in a data HOB.

9. If the security checks failed, then determining the next
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() capsule
number; otherwise, go to step 11.

10. If more DXE recovery capsules exist, then go to step 5; otherwise, perform error handling.



Draft for Review Code Definitions

Version 0.9 September 2003 25

11. Decomposing the capsule loaded by
EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.LoadRecoveryCapsule() into its
components. It is assumed that the path parameters are redundant for recovery and Setup
parameters are either redundant or canned.

12. Invalidating all HOB entries for updateable firmware volume entries. This invalidation prevents
possible errant drivers from being executed.

13. Updating the HOB table with the recovery DXE firmware volume information generated from
the capsule decomposition.

14. Returning to the PEI Dispatcher.



Recovery Specification Draft for Review

26 September 2003 Version 0.9

EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()

Summary
Loads a DXE capsule from some media into memory and updates the HOB table with the DXE
firmware volume information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_LOAD_RECOVERY_CAPSULE) (

IN EFI_PEI_SERVICES **PeiServices,
IN struct _EFI_PEI_RECOVERY_MODULE_PPI *This

);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_RECOVERY_MODULE_PPI instance.

Description
This function, by whatever mechanism, retrieves a DXE capsule from some device and loads it into
memory. Note that the published interface is device neutral.

Status Codes Returned
EFI_SUCCESS The capsule was loaded correctly.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.



Draft for Review Code Definitions

Version 0.9 September 2003 27

Device Recovery Module PPI

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI

Summary
Presents a standard interface to EFI_PEI_RECOVERY_MODULE_PPI, regardless of the
underlying device(s).

GUID
#define EFI_PEI_DEVICE_RECOVERY_MODULE_PPI \
{ 0x0DE2CE25, 0x446A, 0x45a7, 0xBF, 0xC9, 0x37, 0xDA, 0x26, 0x34,
0x4B, 0x37}

PPI Interface Structure
typedef struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI {

EFI_PEI_DEVICE_GET_NUMBER_RECOVERY_CAPSULE
GetNumberRecoveryCapsules;

EFI_PEI_DEVICE_GET_RECOVERY_CAPSULE_INFO
GetRecoveryCapsuleInfo;

EFI_PEI_DEVICE_LOAD_RECOVERY_CAPSULE
LoadRecoveryCapsule;

} EFI_PEI_DEVICE_RECOVERY_MODULE_PPI;

Parameters
GetNumberRecoveryCapsules

Returns the number of DXE capsules that were found. See the
GetNumberRecoveryCapsules() function description.

GetRecoveryCapsuleInfo

Returns the capsule image type and the size of a given image. See the
GetRecoveryCapsuleInfo() function description.

LoadRecoveryCapsule

Loads a DXE capsule into memory. See the LoadRecoveryCapsule() function
description.



Recovery Specification Draft for Review

28 September 2003 Version 0.9

Description
The role of this module is to present a standard interface to
EFI_PEI_RECOVERY_MODULE_PPI, regardless of the underlying device(s). The interface does
the following:

• Reports the number of recovery DXE capsules that exist on the associated device(s)
• Finds the requested firmware binary capsule
• Loads that capsule into memory

A device can be either a group of devices, such as a block device, or an individual device. The
module determines the internal search order, with capsule number 1 as the highest load priority and
number N as the lowest priority.



Draft for Review Code Definitions

Version 0.9 September 2003 29

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.
GetNumberRecoveryCapsules()

Summary
Returns the number of DXE capsules residing on the device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_GET_NUMBER_RECOVERY_CAPSULE) (

IN EFI_PEI_SERVICES **PeiServices,
IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
OUT UINTN *NumberRecoveryCapsules

);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

NumberRecoveryCapsules

Pointer to a caller-allocated UINTN. On output, *NumberRecoveryCapsules
contains the number of recovery capsule images available for retrieval from this
PEIM instance.

Description
This function, by whatever mechanism, searches for DXE capsules from the associated device and
returns the number and maximum size in bytes of the capsules discovered. Entry 1 is assumed to be
the highest load priority and entry N is assumed to be the lowest priority.

Status Codes Returned
EFI_SUCCESS One or more capsules were discovered.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.



Recovery Specification Draft for Review

30 September 2003 Version 0.9

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsuleInfo()

Summary
Returns the size and type of the requested recovery capsule.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_GET_RECOVERY_CAPSULE_INFO) (

IN EFI_PEI_SERVICES **PeiServices,
IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
IN UINTN CapsuleInstance,
OUT UINTN *Size,
OUT EFI_GUID *CapsuleType

);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

CapsuleInstance

Specifies for which capsule instance to retrieve the information. This parameter must
be between one and the value returned by GetNumberRecoveryCapsules() in
NumberRecoveryCapsules.

Size

A pointer to a caller-allocated UINTN in which the size of the requested recovery
module is returned.

CapsuleType

A pointer to a caller-allocated EFI_GUID in which the type of the requested
recovery capsule is returned. The semantic meaning of the value returned is defined
by the implementation. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.



Draft for Review Code Definitions

Version 0.9 September 2003 31

Description
This function returns the size and type of the capsule specified by CapsuleInstance.

Status Codes Returned
EFI_SUCCESS One or more capsules were discovered.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND A recovery DXE capsule cannot be found.



Recovery Specification Draft for Review

32 September 2003 Version 0.9

EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule()

Summary
Loads a DXE capsule from some media into memory.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_DEVICE_LOAD_RECOVERY_CAPSULE) (

IN OUT EFI_PEI_SERVICES **PeiServices,
IN struct _EFI_PEI_DEVICE_RECOVERY_MODULE_PPI *This,
IN UINTN CapsuleInstance,
OUT VOID *Buffer

);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_DEVICE_RECOVERY_MODULE_PPI instance.

CapsuleInstance

Specifies which capsule instance to retrieve.

Buffer

Specifies a caller-allocated buffer in which the requested recovery capsule will be
returned.

Description
This function, by whatever mechanism, retrieves a DXE capsule from some device and loads it into
memory. Note that the published interface is device neutral.

Status Codes Returned
EFI_SUCCESS The capsule was loaded correctly.

EFI_DEVICE_ERROR A device error occurred.

EFI_NOT_FOUND The requested recovery DXE capsule cannot be found.



Draft for Review Code Definitions

Version 0.9 September 2003 33

Device Recovery Block I/O PPI

Device Recovery Block I/O PPI
The Recovery Module PPI and the Device Recovery Module PPI subsections earlier in Code
Definitions are device neutral. This section is device specific and addresses the most common form
of recovery media—block I/O devices such as legacy floppy, CD-ROM, or IDE devices.

The Recovery Block I/O PPI is used to access block devices. Because the Recovery Block I/O PPIs
that are provided by the PEI ATAPI driver and PEI legacy floppy driver are the same, here we
define a set of general PPIs for both drivers to use.

EFI_PEI_RECOVERY_BLOCK_IO_PPI

Summary
Provides the services required to access a block I/O device during PEI recovery boot mode.

GUID
#define EFI_PEI_IDE_BLOCK_IO_PPI \

{ 0x0964e5b22, 0x6459, 0x11d2, 0x8e, 0x39, 0x00, 0xa0, 0xc9,
0x69, 0x72, 0x3b }

#define EFI_PEI_144_FLOPPY_BLOCK_IO_PPI \
{ 0xda6855bd, 0x07b7, 0x4c05, 0x9e, 0xd8, 0xe2, 0x59, 0xfd,

0x36, 0x0e, 0x22 }

These GUIDs are hardware-device class GUIDs that would be imported only by the Virtual Block
I/O PEIM. This virtual PEIM imports only actual Block I/O PPIs from the device-class ones listed
above and publishes a single instance of the Block I/O PPI for consumption by the File System
PEIM. In the parlance of the Framework DXE software stack, this Virtual Block I/O PEIM is
actually embodying the functionality of the partition driver. This Virtual Block I/O PEIM has to
multiplex the multiple possible instances of block I/O and also know how to parse at least El Torito
for CD-ROM and perhaps Master Boot Record (MBR) and GUID Partition Table (GPT) in the
future.

#define EFI_PEI_VIRTUAL_BLOCK_IO_PPI \
{ 0x695d8aa1, 0x42ee, 0x4c46, 0x80, 0x5c,0x6e, 0xa6, 0xbc,

0xe7, 0x99, 0xe3 }

Two classes of devices are supported, each of which can publish this PPI. This a priori segregation
is performed so that the Virtual Block I/O PEIM can import multiple possible interfaces. The only
way to achieve this end in the present implementation of the Intel® Platform Innovation
Framework for EFI Pre-EFI Initialization Core Interface Specification (PEI CIS) is by using daisy
chaining. The daisy chain model permits only one of the N chained PPIs to return, whereas here we
would like to have the possibility of more than one module return information to the File System
PEIM.



Recovery Specification Draft for Review

34 September 2003 Version 0.9

Again, it is important to stress that there is only one architectural definition of this Block I/O
interface, with the two classes of interface providers. The first class abstracts actual device
instances, and the second consumes these virtual interfaces. This consumption is implementation
dependent inasmuch as it can use the Import Table mechanism or the PEI Service LocatePpi()
intrinsic for discovering and invoking the services.

PPI Interface Structure
typedef struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI {

EFI_PEI_GET_NUMBER_BLOCK_DEVICES GetNumberOfBlockDevices;
EFI_PEI_GET_DEVICE_MEDIA_INFORMATION

GetBlockDeviceMediaInfo;
EFI_PEI_READ_BLOCKS ReadBlocks;

} EFI_PEI_RECOVERY_BLOCK_IO_PPI;

Parameters
GetNumberOfBlockDevices

Gets the number of block I/O devices that the specific block driver manages. See the
GetNumberOfBlockDevices() function description.

GetBlockDeviceMediaInfo

Gets the specified media information. See the GetBlockDeviceMediaInfo()
function description.

ReadBlocks

Reads the requested number of blocks from the specified block device. See the
ReadBlocks() function description.

Description
This function provides the services that are required to access a block I/O device during PEI
recovery boot mode.



Draft for Review Code Definitions

Version 0.9 September 2003 35

EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()

Summary
Gets the count of block I/O devices that one specific block driver detects.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_NUMBER_BLOCK_DEVICES) (

IN EFI_PEI_SERVICES **PeiServices,
IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
OUT UINTN *NumberBlockDevices

);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

NumberBlockDevices

The number of block I/O devices discovered.

Description
This function is used for getting the count of block I/O devices that one specific block driver
detects. To the PEI ATAPI driver, it returns the number of all the detected ATAPI devices it detects
during the enumeration process. To the PEI legacy floppy driver, it returns the number of all the
legacy devices it finds during its enumeration process. If no device is detected, then the function
will return zero.

Status Codes Returned
None.



Recovery Specification Draft for Review

36 September 2003 Version 0.9

EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo()

Summary
Gets a block device’s media information.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_GET_DEVICE_MEDIA_INFORMATION) (

IN EFI_PEI_SERVICES **PeiServices,
IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
IN UINTN DeviceIndex,
OUT EFI_PEI_BLOCK_IO_MEDIA *MediaInfo

);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

MediaInfo

The media information of the specified block media. Type
EFI_PEI_BLOCK_IO_MEDIA is defined in “Related Definitions” below. The
caller is responsible for the ownership of this data structure.

Note that this structure describes an enumeration of possible block device types. This
enumeration exists because no device paths are actually passed across interfaces that
describe the type or class of hardware that is publishing the block I/O interface. This
enumeration will allow for policy decisions in the Recovery PEIM, such as “Try to
recover from legacy floppy first, LS-120 second, CD-ROM third.” If there are
multiple partitions abstracted by a given device type, they should be reported in
ascending order; this order also applies to nested partitions, such as legacy MBR,
where the outermost partitions would have precedence in the reporting order. The
same logic applies to systems such as IDE that have precedence relationships like
“Master/Slave” or “Primary/Secondary”; the master device should be reported first,
the slave second.



Draft for Review Code Definitions

Version 0.9 September 2003 37

Description
This function will provide the caller with the specified block device’s media information. If the
media changes, calling this function will update the media information accordingly.

Related Definitions
//***************************************************
// EFI_PEI_BLOCK_IO_MEDIA
//***************************************************

typedef struct {
EFI_PEI_BLOCK_DEVICE_TYPE DeviceType;
BOOLEAN MediaPresent;
UINTN LastBlock;
UINTN BlockSize;

} PEI_BLOCK_IO_MEDIA;

DevType

The type of media device being referenced by DeviceIndex. Type
EFI_PEI_BLOCK_DEVICE_TYPE is defined below.

MediaPresent

A flag that indicates if media is present. This flag is always set for nonremovable
media devices.

LastBlock

The last logical block that the device supports.

BlockSize

The size of a logical block in bytes.

//***********************************************************
// EFI_PEI_BLOCK_DEVICE_TYPE
//***********************************************************
typedef enum {

LegacyFloppy = 0,
IdeCDROM = 1,
IdeLS120 = 2,
UsbMassStorage = 3,
MaxDeviceType

} EFI_PEI_BLOCK_DEVICE_TYPE;

Status Codes Returned
EFI_SUCCESS Media information about the specified block device was obtained

successfully.

EFI_DEVICE_ERROR Cannot get the media information due to a hardware error.



Recovery Specification Draft for Review

38 September 2003 Version 0.9

EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks()

Summary
Reads the requested number of blocks from the specified block device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_PEI_READ_BLOCKS) (

IN EFI_PEI_SERVICES **PeiServices,
IN struct _EFI_PEI_RECOVERY_BLOCK_IO_PPI *This,
IN UINTN DeviceIndex,
IN EFI_PEI_LBA StartLBA,
IN UINTN BufferSize,
OUT VOID *Buffer

);

Parameters
PeiServices

General-purpose services that are available to every PEIM. Type
EFI_PEI_SERVICES is defined in the Intel® Platform Innovation Framework for
EFI Pre-EFI Initialization Core Interface Specification (PEI CIS).

This

Indicates the EFI_PEI_RECOVERY_BLOCK_IO_PPI instance.

DeviceIndex

Specifies the block device to which the function wants to talk. Because the driver that
implements Block I/O PPIs will manage multiple block devices, the PPIs that want to
talk to a single device must specify the device index that was assigned during the
enumeration process. This index is a number from one to NumberBlockDevices.

StartLBA

The starting logical block address (LBA) to read from on the device. Type
EFI_PEI_LBA is defined in “Related Definitions” below.

BufferSize

The size of the Buffer in bytes. This number must be a multiple of the intrinsic
block size of the device.

Buffer

A pointer to the destination buffer for the data. The caller is responsible for the
ownership of the buffer.



Draft for Review Code Definitions

Version 0.9 September 2003 39

Description
The function reads the requested number of blocks from the device. All the blocks are read, or an
error is returned. If there is no media in the device, the function returns EFI_NO_MEDIA.

Related Definitions
//*****************************************************
// EFI_PEI_LBA
//*****************************************************

typedef UINT64 EFI_PEI_LBA;

EFI_PEI_LBA is the UINT64 LBA number.

Status Codes Returned
EFI_SUCCESS The data was read correctly from the device.

EFI_DEVICE_ERROR The device reported an error while attempting to perform the read
operation.

EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is
not properly aligned.

EFI_NO_MEDIA There is no media in the device.

EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block
size of the device.


	Intel® Platform Innovation Framework for EFI Recovery Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Target Audience
	Scope
	Goals
	Required Features
	Conventions Used in This Document
	Data Structure Descriptions
	Procedure Descriptions
	PPI Descriptions
	Pseudo-Code Conventions
	Typographic Conventions


	2. Design Discussion
	Terms
	Definition of “Recovery”
	Steps in the Recovery Sequence
	Steps in the Recovery Sequence
	Detecting That Recovery Is Needed
	PEI Recovery Phase
	Finding and Loading the Recovery DXE Image
	Finding the Recovery DXE Image: Overview
	Recovery Sequence
	Recovery PPIs
	Recovery Module PPI
	Device Recovery Module PPI
	Device Recovery Block I/O PPI


	DXE Recovery Phase and After
	DXE Recovery Phase and After
	Recovering the Framework Firmware
	Post-Recovery Operations



	3. Code Definitions
	Introduction
	Recovery Module PPI
	EFI_PEI_RECOVERY_MODULE_PPI
	EFI_PEI_RECOVERY_MODULE_PPI.LoadRecoveryCapsule()

	Device Recovery Module PPI
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI.�GetNumberRecoveryCapsules()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. GetRecoveryCapsuleInfo()
	EFI_PEI_DEVICE_RECOVERY_MODULE_PPI. LoadRecoveryCapsule()

	Device Recovery Block I/O PPI
	Device Recovery Block I/O PPI
	EFI_PEI_RECOVERY_BLOCK_IO_PPI
	EFI_PEI_RECOVERY_BLOCK_IO_PPI. GetNumberOfBlockDevices()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI.GetBlockDeviceMediaInfo()
	EFI_PEI_RECOVERY_BLOCK_IO_PPI.ReadBlocks()



