
Overview
Bidirectional Encoder Representations from Transformers (BERT) is a widely used
ML model and technique for natural language processing (NLP). BERT has been
used to refresh countless records in NLP tasks since its inception. It has also
performed extremely well in practical core-bound applications.

For search, machine translation, man-machine interaction, and other NLP tasks,
BERT has been widely adopted across multiple user scenarios. Because BERT
performance directly affects the user experience with applications and increases
the queries per second (QPS) throughput rate, engineers have considered a wide
variety of ways to optimize the model to improve its performance.

Tencent StarLake Lab personnel explore advanced cloud computing, artificial
intelligence (AI), security, storage, and network technologies to deliver solutions
that improve data center performance and reduce the total cost of ownership (TCO)
of data centers. The Tencent Machine Learning Platform Department (MLPD) is
the heart of the Tencent AI platform, constantly working to drive innovations across
Tencent’s internet and technology businesses. The MLPD engages in R&D covering
a broad range of fields, including computer vision, voice recognition, graph
computation, and NLP. Solutions created by the MLPD have been broadly applied
to major scenarios in social media, personalized advertising, gaming AI, and content
recommendation and search. BERT plays a key role in applications across all these
tech sectors.

Intel has closely collaborated with Tencent MLPD and Tencent StarLake laboratory
on BERT inference optimization using Intel® AMX, a built-in accelerator for 4th Gen
Intel® Xeon® Scalable processors. The teams demonstrated that BERT model
throughput [INT8] could increase 2x and BERT model throughput [BF16] could
increase 3x when running on systems powered by 4th Gen Intel Xeon Scalable
processors using Intel AMX.1,2 By combining Intel AMX and software optimizations
into a powerful unified solution, Tencent aims to evolve its capabilities to deliver a
consistent service experience and to optimize TCO.

Tencent Social Applications Optimization
The Tencent social applications connect over a billion active users around the world.
One of most popular Tencent social applications was released in 2011 and became
the world’s largest standalone mobile app in 2018. In fact, it was nicknamed “China’s
app for everything” because of its impressive array of functions and uses, which
include text messaging, voice messaging, broadcast messaging (one-to-many),
video games, and video conferencing. Additionally, it includes photo-sharing, video-
sharing, and location-sharing features.

Bidirectional Encoder Representations from Transformers (BERT) model
throughput shows 2x−3x performance gains with 4th Gen Intel® Xeon® Scalable
processors and Intel AMX versus the previous generation1,2

Machine Learning
4th Gen Intel® Xeon® Scalable processors

Optimizing Machine Learning (ML) Models with
Intel® Advanced Matrix Extensions (Intel® AMX)

Solution Brief

In this solution brief, standard
BERT models of 12 layers, 768
hidden size, 12 heads, and 128
sequence length (token size)
are used as the proxy model
for introduction of the fusion
optimization methodology.

Solution Brief | Optimizing Machine Learning (ML) Models with Intel® Advanced Matrix Extensions (Intel® AMX)

Most users of that app tend to use its integrated search engine to search for text messages, articles, mini-programs, short
videos, music, and other popular types of content. The key challenges for the search engine are how to handle large-scale
queries and respond promptly with the search results. Deep optimization with Intel AMX is deemed to be the solution to these
challenges, to improve the overall application search experience by decreasing TCO and leveraging the existing general-
purpose infrastructure of the search engine.

Fusion Optimization
Fusion optimization had previously been realized through the FP32 solution by fusing 12 layers of the BERT base model into
a single, large operation (op). Intel AMX now provides the functionality necessary for even more in-depth fusion optimization.

Because MatMul and BatchMatMul ops can consume significant amounts of BERT time, optimizing MatMul and BatchMatMul
is key to improving performance. Based on past experience, performance optimization can be achieved by either reducing
computation or reducing memory access. Removing unnecessary ops from the model can reduce computation, which in turn
will decrease the number of instructions. Merging several ops into one can reduce memory access, which allows for accessed
data to be kept in cache until needed for further use.

Based on these ideas, Tencent MLPD and Intel transformed some of the most time-consuming processes into a large operation
called “Fused BERT op,” as shown in Figure 1.

Figure 1. BERT optimization by merging several ops into a single Fused BERT op

Model before transformation

Model after transformation

BERT

Fused
BERT op

Pre-processing Post-processingProcessing (most time-consuming)

Pre-processing Post-processing

The Fused BERT op achieves optimization in the following ways:

•	 As inputs of query, key, and value (QKV) MatMul are equal, the weights of these ops can be merged into a big weights
matrix, and then merged into a big QKV MatMul. After these weights are merged, the memory of each weight and each
output is no longer continuous. As such, when the QKV output is used as the input of the next op, a suitable “stride”
must be configured. This optimization flow is illustrated in Figure 2.

2

Solution Brief | Optimizing Machine Learning (ML) Models with Intel® Advanced Matrix Extensions (Intel® AMX)

Merge
weights

Query128

MatMul

Query

Key

Value

768 768

768

768

128

128

768

128

768

128

768

768

768

768

MatMul
with stride

Key

Value

768

768

768

768
768

128

768

768

768

•	 The transpose ops are removed before and after the BatchMatMul as oneDNN supports BatchMatMul with stride. This
saves a large amount of memory access and computation. The optimization flow is shown in Figure 3.

Figure 2. QKV MatMul optimization flowchart

Figure 3. BatchMul optimization flowchart

•	 Certain operations can be integrated into MatMul primitives, as oneDNN supports MatMul with BiasAdd and certain
post ops (such as OutputScale, Sum, Relu, Gelu, and Tanh). Integrating these ops improves cache use efficiency. In
other words, this can keep the data warm in the cache so that related data can be called by multiple tasks.

... ...

...

...

......

64

64

Query Key Value

768
128

64

128

64

128

128

64

128

64

128

64

128
128

128

128

128

0

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

9

10

11

9

10

11

9

10

11

9

10

11

9

10

11

9

10

11

1
2

9
10

11

0
1

2

9
10

11

0
1

2

9
10

11

0
1

2

9
10

11

768

768

768

Softmax
BatchMatMul

Transpose Transpose Transpose

Transpose

BatchMatMul

...

128

128

0

1

2

9

10

11

...

128

128

0

1

2

9

10

11

...

...

...

64

Query

Key

Value

768
128 0

1
2

64

64

0

0

1
2

9
10

11

1
2

9
10

11

9
10

11
768

768

Softmax

BatchMatMul
with stride

BatchMatMul
with stride

...
64

768
128 0

1
2

9
10

11

3

Solution Brief | Optimizing Machine Learning (ML) Models with Intel® Advanced Matrix Extensions (Intel® AMX)

Sparse

Padding Padding

Computation complexity =
B*S*3*H*emb_dim

emb_dim

3*H

Padding

B
B

emb_dim

3*H

S S

B

S

qkv_weight

MatMul

Dense

emb_dim

3*H

emb_dim

3*H

qkv_weight

MatMul

Computation complexity =
B*S*3*H*emb_dim

S S

Valid Feature Compression

B: Batch Size
S: Seq Length
H: Hidden Size

S_total

S_total S_total

Feature Dense Optimization
In NLP tasks, features or data usually have unequal lengths, and a large amount of padding needs to be inserted to form batches.
This results in a large amount of unnecessary computational overhead. Intel partnered with Tencent MLPD in developing the
Feature Dense optimization solution for the BERT model, which removes computational overhead and significantly improves
task performance. The larger the batch size, the greater the performance improvements. Figure 4, which shows only part of
the BERT model, outlines how this optimization works.

Figure 4. Feature Dense optimization solution

As Figure 4 illustrates, the Feature Dense optimization solution removes padding from the input and connects the data of
each batch, one by one, to form a piece of one-dimensional data. Subsequent operations such as embedding, QKV MatMul,
and later MatMul ops (omitted from the figure) are based on the compressed data. This greatly reduces the computational
complexity, as shown in the figure.

BF16/INT8 Optimization
Application of the FP32 optimization outlined earlier in this solution brief has already improved BERT performance significantly,
but there is room for more improvement. Further reducing memory access will result in even better performance. This can be
done by reducing the size of data during computation. FP32 data, including input and weights, can be converted to BF16/INT8
data before it is used for computing.

The question then becomes this: Which platform can support BF16/INT8 computation while retaining strong performance?
3rd Gen Intel Xeon Scalable processors (Cooper Lake and Ice Lake) come equipped with Intel® Deep Learning Boost
(Intel® DL Boost), which support VNNI (INT8) instructions for vector multiply. Cooper Lake also supports the BF16 numerical
format. This enables the leveraging of the FP32 optimization solution for BF16 or INT8 optimization. Test results confirm that
BF16 or INT8 optimization can improve performance markedly, compared to the FP32 solution.

4

Solution Brief | Optimizing Machine Learning (ML) Models with Intel® Advanced Matrix Extensions (Intel® AMX)

Intel AMX on 4th Gen Intel Xeon Scalable Processors
Is there any space for further optimization? Absolutely. Intel AMX is a built-in accelerator of 4th Gen Intel Xeon Scalable
processors. Intel AMX provides a 64-bit programming paradigm with a set of two-dimensional registers (tiles) representing
sub-arrays from a larger two-dimensional memory image, plus an accelerator capable of tile ops. The first implementation is
TMUL, which stands for “tile matrix multiply unit.”

Figure 5 shows a conceptual diagram of the Intel AMX architecture. An Intel architecture host drives the algorithm, memory
blocks, loop indices, and pointer arithmetic. Tile loads and stores and accelerator commands are sent to multi-cycle execution
units—TMUL.

Performing a complete matrix multiplication (a “matrix multiply”) is a very complex computation. Writing such complex code
every time it’s necessary to perform matrix multiply operations is not cost-effective.

Fortunately, oneDNN can help simplify this work. We only need call the MatMul primitive with some post-ops and pass several
parameters (for example, m, n, k, stride, and data address). Just like its predecessor Intel Math Kernel Library (MKL), oneDNN
will complete remaining work such as configuring the tile register files, loading data from memory, performing matrix multiply
computation with post-ops, storing the result in memory, and releasing the tile register files. The use of Intel AMX is transparent
to programmers via oneDNN, thus simplifying the programming required.

The entire flowchart of BERT running on a 4th Gen Intel Xeon Scalable processor with Intel AMX is shown in Figure 6.

Figure 5. Intel AMX architecture

IA host

New state to be managed by the OS.

Commands and status delivered synchronously via tile/accelerator instructions.

Dataflow; accelerators communicate to host through memory.

Accelerator 1 (TMUL)

Accelerator 2

tmm0 += tmm1 *tmm2

Coherent
memory interface

Tiles and
accelerator
commands

tmm0

tmm[n-1]
...

tmm1

TILECFG

5

Solution Brief | Optimizing Machine Learning (ML) Models with Intel® Advanced Matrix Extensions (Intel® AMX)

Training

Inference

BERT model

Training

QAT
training

Weights
(FP32)

Input
(FP32)

Accuracy

FP32/BF16 quant

INT8 quant

oneDNN

Performance
Performance or
accuracy focus? 4th Gen

Intel Xeon
Scalable

processors

BERT optimized
with op fusion

Weights
(FP32)

and scale for
INT8 quant

AMX
Output

Performance Comparison
Intel AMX acceleration can greatly improve BERT performance. To show the generation-to-generation performance advantage,
we need to compare performance on various platforms. During the collaboration with Intel, Tencent StarLake Lab contributed
greatly to the performance comparison and optimization work by employing their deep understanding of x86 micro-architecture
and their experience with performance tuning. These contributions were invaluable in proving the performance of BERT
technology on 3rd Gen Intel Xeon Scalable processors and 4th Gen Intel Xeon Scalable processors.

Multiple optimization instances were performed on one socket, and the latency of each instance was kept consistent. The
performance results presented in Figure 7 show that the system performance using 4th Gen Intel Xeon Scalable processors
with Intel AMX was significantly better on both INT8 and BF16—2.05x and 3.02x, respectively—compared to 3rd Gen Intel
Xeon Scalable processors.1,2

Figure 6. Entire flowchart of BERT with Intel AMX on 4th Gen Intel Xeon Scalable processors

Figure 7. BERT model throughput gains using 4th Gen Intel Xeon Scalable processors with Intel AMX versus the
previous generation

BERT-base INT8 throughput compare1

(bs=1, seqLen=4˜64)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
(h

ig
he

r
is

 b
et

te
r)

2.50

2.00

1.50

1.00

0.50

0.00
3rd Gen Intel Xeon
Platinum processor

(VNNI-INT8)

1.0

2.05

4th Gen Intel Xeon
Platinum processor

(AMX-INT8)

BERT-base BF16 throughput compare2

(bs=1, seqLen=4˜64)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
(h

ig
he

r
is

 b
et

te
r)

4.00

3.00

2.00

1.00

0.00
3rd Gen Intel Xeon

Platinum processor (BF16)

1.0

3.02

4th Gen Intel Xeon
Platinum processor (AMX-BF16)

6

Solution Brief | Optimizing Machine Learning (ML) Models with Intel® Advanced Matrix Extensions (Intel® AMX)

Summary
It’s been demonstrated that 4th Gen Intel Xeon Scalable processors with Intel AMX can improve the performance of matrix
multiply computations greatly through BF16/INT8 TMUL computing units and related instructions. Using Intel AMX, Intel
and Tencent demonstrated BERT model throughput gains of 2x-3x versus the previous generation.1,2 Now, Tencent can use
the optimized BERT model to deliver better service experiences and to help reduce TCO.

7

1 BERT-base16 INT8 Throughput Comparison

Baseline: Tencent TriRivers; BIOS version 1.08.00; OS CentOS Linux release 8.5.2111; kernel 4.18.0-348.7.1.el8_5.x86_64; microcode 0xd000375; IRQ balanced: Enabled; CPU
Intel® Xeon® Platinum; Threads per core 2: Sockets 2: NUMA nodes 2; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINs b59090a6f33f7966,b591426010edf8
6a; Power and Performance Policy: Performance; TDP 270 watts; Frequency driver intel_pstate; Frequency governor performance; Frequency (MHz) 2701; Max C-State 9; Installed
memory 960GB (15x64GB DDR4 3200 MT/s [3200 MT/s])); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA balancing: Enabled; NIC 2x MT2892
Family [ConnectX-6 Dx], 1x device, 1x Ethernet interface; Driver summary 1x 111.8G INTEL SSDSCKHB12 Workload and version: BERT optimization for INT8; compiler GCC 8.5;
libraries oneDNN-master-0721; Date tested 8/5/2022.

New: Intel Corporation ArcherCity; BIOS version EGSDCRB1.SYS.0090.D03.2210040200; OS CentOS Linux 8; kernel 5.16.0; microcode 0x2b0000c0; IRQ balanced: Enabled;
CPU Intel® Xeon® Platinum; Threads per core 2; Sockets 2: NUMA nodes 2; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINS 31461920530bed98,3143931fcf
7f6036; Power and Performance Policy: Performance; TDP 350 watts; Frequency driver intel_pstate; Frequency governor performance; Frequency (MHz) 2494; Max C-State 9;
Installed memory 512GB (16x32GB <OUT OF SPEC> 4800 MT/s [4800 MT/s]); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA balancing: Enabled; NIC
1x Ethernet Controller I225-LM, 1x Ethernet Controller E810-C for QSFP ; Driver summary 1x 349.3G INTEL SSDPE21K375GA, 1x 1.5T INTEL SSDPEDMD016T4, 1x 1.9T INTEL
SSDPEKNW020T8 Workload and version: BERT optimization for INT8; compiler GCC 8.5; libraries oneDNN-master-0721; Date tested 10/19/2022.

2 BERT-base16 BF16 Throughput Comparison

Baseline: Tencent QinghaiLake; BIOS version 1.02.00; OS Red Hat Enterprise Linux 8.2 (Ootpa); kernel 4.18.0-193.el8.x86_64; microcode 0x7002502; IRQ balance Enabled; CPU
Intel® Xeon® Platinum; Threads per core 2; Sockets 4: NUMA nodes 4; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINs 07ab90bc7f220116,07be7bc039fedc8f,
07abcfbe92ff7f9b,07aba8bff01f278d; Power and Performance Policy: Performance; TDP 175 watts; Frequency driver acpi-cpufreq; Frequency governor performance; Frequency
(MHz) 2695; Max C-State 9; Installed memory 1536GB (24x64GB DDR4 3200 MT/s [3200 MT/s]); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA
balancing: Enabled; NIC 1x Ethernet interface; Driver summary: 1x 447.1G SSSTC ER2-GD480, 1x 894.3G Micron_5100_MTFDWorkload and version: BERT optimization for BF16;
compiler GCC 8.3; libraries oneDNN-master-0721; Date tested 8/8/2022.

New: Intel Corporation ArcherCity; BIOS version EGSDCRB1.SYS.0090.D03.2210040200; OS CentOS Linux 8; kernel 5.16.0; microcode 0x2b0000c0; IRQ balanced: Enabled;
CPU Intel® Xeon® Platinum; Threads per core 2; Sockets 2: NUMA nodes 2; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINS 31461920530bed98,3143931fcf
7f6036; Power and Performance Policy: Performance; TDP 350 watts; Frequency driver intel_pstate; Frequency governor performance; Frequency (MHz) 2552; Max C-State 9;
Installed memory 512GB (16x32GB <OUT OF SPEC> 4800 MT/s [4800 MT/s]); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA balancing: Enabled; NIC
1x Ethernet Controller I225-LM, 1x Ethernet Controller E810-C for QSFP ; Driver summary 1x 349.3G INTEL SSDPE21K375GA, 1x 1.5T INTEL SSDPEDMD016T4, 1x 1.9T INTEL
SSDPEKNW020T8 Workload and version: BERT optimization for BF16; compiler GCC 8.5; libraries oneDNN-master-0721; Date tested 10/19/2022.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.
Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or
component can be absolutely secure.
Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as
well as any warranty arising from course of performance, course of dealing, or usage in trade.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property
of others.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/

