
Overview 
Bidirectional Encoder Representations from Transformers (BERT) is a widely used 
ML model and technique for natural language processing (NLP). BERT has been 
used to refresh countless records in NLP tasks since its inception. It has also 
performed extremely well in practical core-bound applications. 

For search, machine translation, man-machine interaction, and other NLP tasks, 
BERT has been widely adopted across multiple user scenarios. Because BERT 
performance directly affects the user experience with applications and increases 
the queries per second (QPS) throughput rate, engineers have considered a wide 
variety of ways to optimize the model to improve its performance.  

Tencent StarLake Lab personnel explore advanced cloud computing, artificial 
intelligence (AI), security, storage, and network technologies to deliver solutions 
that improve data center performance and reduce the total cost of ownership (TCO) 
of data centers. The Tencent Machine Learning Platform Department (MLPD) is 
the heart of the Tencent AI platform, constantly working to drive innovations across 
Tencent’s internet and technology businesses. The MLPD engages in R&D covering 
a broad range of fields, including computer vision, voice recognition, graph 
computation, and NLP. Solutions created by the MLPD have been broadly applied 
to major scenarios in social media, personalized advertising, gaming AI, and content 
recommendation and search. BERT plays a key role in applications across all these 
tech sectors. 

Intel has closely collaborated with Tencent MLPD and Tencent StarLake laboratory 
on BERT inference optimization using Intel® AMX, a built-in accelerator for 4th Gen 
Intel® Xeon® Scalable processors. The teams demonstrated that BERT model 
throughput [INT8] could increase 2x and BERT model throughput [BF16] could 
increase 3x when running on systems powered by 4th Gen Intel Xeon Scalable 
processors using Intel AMX.1,2  By combining Intel AMX and software optimizations 
into a powerful unified solution, Tencent aims to evolve its capabilities to deliver a 
consistent service experience and to optimize TCO. 

Tencent Social Applications Optimization
The Tencent social applications connect over a billion active users around the world. 
One of most popular Tencent social applications was released in 2011 and became 
the world’s largest standalone mobile app in 2018. In fact, it was nicknamed “China’s 
app for everything” because of its impressive array of functions and uses, which 
include text messaging, voice messaging, broadcast messaging (one-to-many), 
video games, and video conferencing. Additionally, it includes photo-sharing, video-
sharing, and location-sharing features. 

Bidirectional Encoder Representations from Transformers (BERT) model 
throughput shows 2x−3x performance gains with 4th Gen Intel® Xeon® Scalable 
processors and Intel AMX versus the previous generation1,2
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Most users of that app tend to use its integrated search engine to search for text messages, articles, mini-programs, short 
videos, music, and other popular types of content. The key challenges for the search engine are how to handle large-scale 
queries and respond promptly with the search results. Deep optimization with Intel AMX is deemed to be the solution to these 
challenges, to improve the overall application search experience by decreasing TCO and leveraging the existing general-
purpose infrastructure of the search engine.

Fusion Optimization
Fusion optimization had previously been realized through the FP32 solution by fusing 12 layers of the BERT base model into 
a single, large operation (op). Intel AMX now provides the functionality necessary for even more in-depth fusion optimization. 

Because MatMul and BatchMatMul ops can consume significant amounts of BERT time, optimizing MatMul and BatchMatMul 
is key to improving performance. Based on past experience, performance optimization can be achieved by either reducing 
computation or reducing memory access. Removing unnecessary ops from the model can reduce computation, which in turn 
will decrease the number of instructions. Merging several ops into one can reduce memory access, which allows for accessed 
data to be kept in cache until needed for further use.

Based on these ideas, Tencent MLPD and Intel transformed some of the most time-consuming processes into a large operation 
called “Fused BERT op,” as shown in Figure 1.

Figure 1. BERT optimization by merging several ops into a single Fused BERT op
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The Fused BERT op achieves optimization in the following ways:

•	 As inputs of query, key, and value (QKV) MatMul are equal, the weights of these ops can be merged into a big weights 
matrix, and then merged into a big QKV MatMul. After these weights are merged, the memory of each weight and each 
output is no longer continuous. As such, when the QKV output is used as the input of the next op, a suitable “stride” 
must be configured. This optimization flow is illustrated in Figure 2.
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•	 The transpose ops are removed before and after the BatchMatMul as oneDNN supports BatchMatMul with stride. This 
saves a large amount of memory access and computation. The optimization flow is shown in Figure 3.

Figure 2. QKV MatMul optimization flowchart

Figure 3. BatchMul optimization flowchart

•	 Certain operations can be integrated into MatMul primitives, as oneDNN supports MatMul with BiasAdd and certain 
post ops (such as OutputScale, Sum, Relu, Gelu, and Tanh). Integrating these ops improves cache use efficiency. In 
other words, this can keep the data warm in the cache so that related data can be called by multiple tasks.
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Feature Dense Optimization
In NLP tasks, features or data usually have unequal lengths, and a large amount of padding needs to be inserted to form batches. 
This results in a large amount of unnecessary computational overhead. Intel partnered with Tencent MLPD in developing the 
Feature Dense optimization solution for the BERT model, which removes computational overhead and significantly improves 
task performance. The larger the batch size, the greater the performance improvements. Figure 4, which shows only part of 
the BERT model, outlines how this optimization works.

Figure 4. Feature Dense optimization solution

As Figure 4 illustrates, the Feature Dense optimization solution removes padding from the input and connects the data of 
each batch, one by one, to form a piece of one-dimensional data. Subsequent operations such as embedding, QKV MatMul, 
and later MatMul ops (omitted from the figure) are based on the compressed data. This greatly reduces the computational 
complexity, as shown in the figure.

BF16/INT8 Optimization
Application of the FP32 optimization outlined earlier in this solution brief has already improved BERT performance significantly, 
but there is room for more improvement. Further reducing memory access will result in even better performance. This can be 
done by reducing the size of data during computation. FP32 data, including input and weights, can be converted to BF16/INT8 
data before it is used for computing. 

The question then becomes this: Which platform can support BF16/INT8 computation while retaining strong performance? 
3rd Gen Intel Xeon Scalable processors (Cooper Lake and Ice Lake) come equipped with Intel® Deep Learning Boost  
(Intel® DL Boost), which support VNNI (INT8) instructions for vector multiply. Cooper Lake also supports the BF16 numerical 
format. This enables the leveraging of the FP32 optimization solution for BF16 or INT8 optimization. Test results confirm that 
BF16 or INT8 optimization can improve performance markedly, compared to the FP32 solution.

4



Solution Brief  |  Optimizing Machine Learning (ML) Models with Intel® Advanced Matrix Extensions (Intel® AMX)

Intel AMX on 4th Gen Intel Xeon Scalable Processors
Is there any space for further optimization? Absolutely. Intel AMX is a built-in accelerator of 4th Gen Intel Xeon Scalable 
processors. Intel AMX provides a 64-bit programming paradigm with a set of two-dimensional registers (tiles) representing 
sub-arrays from a larger two-dimensional memory image, plus an accelerator capable of tile ops. The first implementation is 
TMUL, which stands for “tile matrix multiply unit.”

Figure 5 shows a conceptual diagram of the Intel AMX architecture. An Intel architecture host drives the algorithm, memory 
blocks, loop indices, and pointer arithmetic. Tile loads and stores and accelerator commands are sent to multi-cycle execution 
units—TMUL.

Performing a complete matrix multiplication (a “matrix multiply”) is a very complex computation. Writing such complex code 
every time it’s necessary to perform matrix multiply operations is not cost-effective. 

Fortunately, oneDNN can help simplify this work. We only need call the MatMul primitive with some post-ops and pass several 
parameters (for example, m, n, k, stride, and data address). Just like its predecessor Intel Math Kernel Library (MKL), oneDNN 
will complete remaining work such as configuring the tile register files, loading data from memory, performing matrix multiply 
computation with post-ops, storing the result in memory, and releasing the tile register files. The use of Intel AMX is transparent 
to programmers via oneDNN, thus simplifying the programming required. 

The entire flowchart of BERT running on a 4th Gen Intel Xeon Scalable processor with Intel AMX is shown in Figure 6.

Figure 5. Intel AMX architecture
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Performance Comparison
Intel AMX acceleration can greatly improve BERT performance. To show the generation-to-generation performance advantage, 
we need to compare performance on various platforms. During the collaboration with Intel, Tencent StarLake Lab contributed 
greatly to the performance comparison and optimization work by employing their deep understanding of x86 micro-architecture 
and their experience with performance tuning. These contributions were invaluable in proving the performance of BERT 
technology on 3rd Gen Intel Xeon Scalable processors and 4th Gen Intel Xeon Scalable processors. 

Multiple optimization instances were performed on one socket, and the latency of each instance was kept consistent. The 
performance results presented in Figure 7 show that the system performance using 4th Gen Intel Xeon Scalable processors 
with Intel AMX was significantly better on both INT8 and BF16—2.05x and 3.02x, respectively—compared to 3rd Gen Intel 
Xeon Scalable processors.1,2

Figure 6. Entire flowchart of BERT with Intel AMX on 4th Gen Intel Xeon Scalable processors

Figure 7. BERT model throughput gains using 4th Gen Intel Xeon Scalable processors with Intel AMX versus the  
previous generation
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Summary
It’s been demonstrated that 4th Gen Intel Xeon Scalable processors with Intel AMX can improve the performance of matrix 
multiply computations greatly through BF16/INT8 TMUL computing units and related instructions. Using Intel AMX, Intel 
and Tencent demonstrated BERT model throughput gains of 2x-3x versus the previous generation.1,2 Now, Tencent can use 
the optimized BERT model to deliver better service experiences and to help reduce TCO.
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1 BERT-base16 INT8 Throughput Comparison

Baseline: Tencent TriRivers; BIOS version 1.08.00; OS CentOS Linux release 8.5.2111; kernel 4.18.0-348.7.1.el8_5.x86_64; microcode 0xd000375; IRQ balanced: Enabled; CPU 
Intel® Xeon® Platinum; Threads per core 2: Sockets 2: NUMA nodes 2; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINs b59090a6f33f7966,b591426010edf8
6a; Power and Performance Policy: Performance; TDP 270 watts; Frequency driver intel_pstate; Frequency governor performance; Frequency (MHz) 2701; Max C-State 9; Installed 
memory 960GB (15x64GB DDR4 3200 MT/s [3200 MT/s])); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA balancing: Enabled; NIC 2x MT2892 
Family [ConnectX-6 Dx], 1x device, 1x Ethernet interface;  Driver summary 1x 111.8G INTEL SSDSCKHB12 Workload and version: BERT optimization for INT8; compiler GCC 8.5; 
libraries oneDNN-master-0721; Date tested 8/5/2022.

New: Intel Corporation ArcherCity; BIOS version EGSDCRB1.SYS.0090.D03.2210040200; OS CentOS Linux 8; kernel 5.16.0; microcode 0x2b0000c0; IRQ balanced: Enabled; 
CPU Intel® Xeon® Platinum; Threads per core 2; Sockets 2: NUMA nodes 2; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINS 31461920530bed98,3143931fcf
7f6036; Power and Performance Policy: Performance; TDP 350 watts; Frequency driver intel_pstate; Frequency governor performance; Frequency (MHz) 2494; Max C-State 9; 
Installed memory 512GB (16x32GB <OUT OF SPEC> 4800 MT/s [4800 MT/s]); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA balancing: Enabled; NIC 
1x Ethernet Controller I225-LM, 1x Ethernet Controller E810-C for QSFP ; Driver summary 1x 349.3G INTEL SSDPE21K375GA, 1x 1.5T INTEL SSDPEDMD016T4, 1x 1.9T INTEL 
SSDPEKNW020T8 Workload and version: BERT optimization for INT8; compiler GCC 8.5; libraries oneDNN-master-0721; Date tested 10/19/2022.

2 BERT-base16 BF16 Throughput Comparison

Baseline: Tencent  QinghaiLake; BIOS version 1.02.00; OS Red Hat Enterprise Linux 8.2 (Ootpa); kernel 4.18.0-193.el8.x86_64; microcode 0x7002502; IRQ balance Enabled; CPU 
Intel® Xeon® Platinum; Threads per core 2; Sockets 4: NUMA nodes 4; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINs 07ab90bc7f220116,07be7bc039fedc8f,
07abcfbe92ff7f9b,07aba8bff01f278d; Power and Performance Policy: Performance; TDP 175 watts; Frequency driver acpi-cpufreq; Frequency governor performance; Frequency 
(MHz) 2695; Max C-State 9; Installed memory 1536GB (24x64GB DDR4 3200 MT/s [3200 MT/s]); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA 
balancing: Enabled; NIC 1x Ethernet interface; Driver summary: 1x 447.1G SSSTC ER2-GD480, 1x 894.3G Micron_5100_MTFDWorkload and version: BERT optimization for BF16; 
compiler GCC 8.3; libraries oneDNN-master-0721; Date tested 8/8/2022.

New: Intel Corporation ArcherCity; BIOS version EGSDCRB1.SYS.0090.D03.2210040200; OS CentOS Linux 8; kernel 5.16.0; microcode 0x2b0000c0; IRQ balanced: Enabled; 
CPU Intel® Xeon® Platinum; Threads per core 2; Sockets 2: NUMA nodes 2; Prefetchers L2 HW, L2 Adj., DCU HW, DCU IP; Turbo Enabled; PPINS 31461920530bed98,3143931fcf
7f6036; Power and Performance Policy: Performance; TDP 350 watts; Frequency driver intel_pstate; Frequency governor performance; Frequency (MHz) 2552; Max C-State 9; 
Installed memory 512GB (16x32GB <OUT OF SPEC> 4800 MT/s [4800 MT/s]); Hugepagesize 2048 kB; Transparent Huge Pages always; Automatic NUMA balancing: Enabled; NIC 
1x Ethernet Controller I225-LM, 1x Ethernet Controller E810-C for QSFP ; Driver summary 1x 349.3G INTEL SSDPE21K375GA, 1x 1.5T INTEL SSDPEDMD016T4, 1x 1.9T INTEL 
SSDPEKNW020T8 Workload and version: BERT optimization for BF16; compiler GCC 8.5; libraries oneDNN-master-0721; Date tested 10/19/2022.
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