
Embedded Design Handbook
July 2011

ED51012-1.1

© 2011 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

July 2011
ED51012-1.1
11. Avalon-MM Byte Ordering
Considerations
This chapter describes Avalon® Memory-Mapped (Avalon-MM) interface bus byte
ordering and provides recommendations for representing data in your system.
Understanding byte ordering in both hardware and software is important when using
intellectual property (IP) cores that interpret data differently.

f Altera recommends understanding the following documents before proceeding:

■ The System Interconnect Fabric for Memory-Mapped Interfaces chapter of the SOPC
Builder User Guide

■ The Avalon Interface Specifications

Endianness
The term endian describes data byte ordering in both hardware and software. The two
most common forms of data byte ordering are little endian and big endian. Little
endian means that the least significant portion of a value is presented first and stored
at the lowest address in memory. Big endian means the most significant portion of a
value is presented first and stored at the lowest address in memory. For example,
consider the value 0x1234. In little endian format, the 4 is the first digit presented or
stored. In big endian format, the 1 is the first digit presented or stored.

1 Endianness typically refers only to byte ordering. Bit ordering within each byte is a
separate subject covered in “PowerPC Bus Byte Ordering” on page 11–9 and “ARM
BE-32 Bus Byte Ordering” on page 11–10.

Hardware Endianness
Hardware developers can map the data bits of an interface in any order. There must
be coordination and agreement among developers so that the data bits of an interface
correctly map to address offsets for any master or slave interface connected to the
interconnect. Consistent hardware endianness or bus byte ordering is especially
important in systems that contain IP interfaces of varying data widths because the
interconnect performs the data width conversion between the master and slave
interfaces. The key to simplifying bus byte ordering is to be consistent system-wide
when connecting IP cores to the interconnect. For example, if all but one IP core in
your system use little endian bus byte ordering, modify the interface of the one big
endian IP core to conform to the rest of the system.

1 The way an IP core presents data to the interconnect is not dependent on the internal
representation of the data within the core. IP cores can map the data interface to match
the bus data byte ordering specification independent of the internal arithmetic byte
ordering.
Subscribe

IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

http://www.altera.com/common/legal.html
https://www.altera.com/servlets/subscriptions/alert?id=ED51012
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/ug/ug_sopc_builder.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

11–2 Chapter 11: Avalon-MM Byte Ordering Considerations
Avalon-MM Interface Ordering
Software Endianness
Software endianness or arithmetic byte ordering is the internal representation of data
within an IP core, software compiler, and peripheral drivers. Processors can treat byte
offset 0 of a variable as the most or least significant byte of a multibyte word. For
example, the value 0x0A0B0C0D, which spans multiple bytes, can be represented
different ways. A little endian processor considers the byte 0x0D of the value to be
located at the lowest byte offset in memory, whereas a big endian processor considers
the byte 0x0A of the value to be located at the lowest byte offset in memory.

Example 11–1 shows a C code fragment that illustrates the difference between the
little endian and big endian arithmetic byte ordering used by most processors.

In Example 11–1, the processor writes the 32-bit value 0x0A0B0C0D to memory, then
reads the first byte of the value back. A little endian processor such as the Nios II
processor, which considers memory byte offset 0 to be the least significant byte of a
word, stores byte 0x0D to byte offset 0 of pointer location long_ptr. A processor such
as a PowerPC®, which considers memory byte offset 0 to be the most significant byte
of a word, stores byte 0x0A to byte offset 0 of pointer location long_ptr. As a result,
the variable byte_value is loaded with 0x0D if this code executes on a little endian
Nios II processor and 0x0A if this code executes on a big endian PowerPC processor.

1 Arithmetic byte ordering is not dependent on the bus byte ordering used by the
processor data master that accesses memory. However, word and halfword accesses
sometimes require byte swapping in software to correctly interpret the data internally
by the processor. For more information, refer to “Arithmetic Byte Reordering” on
page 11–12 and “System-Wide Arithmetic Byte Reordering in Software” on
page 11–15.

Avalon-MM Interface Ordering
To ensure correct data communication, the Avalon-MM interface specification
requires that each master or slave port of all components in your system pass data in
descending bit order with data bits 7 down to 0 representing byte offset 0. This bus
byte ordering is a little endian ordering. Any IP core that you add to your system
must comply with the Avalon-MM interface specification. This ordering ensures that
when any master accesses a particular byte of any slave port, the same physical byte
lanes are accessed using a consistent bit ordering.

f For more information, refer to the Avalon Interface Specifications.

Example 11–1. Reading Byte Offset 0 of a 32-Bit Word

long * long_ptr;
char byte_value;
*long_ptr = 0x0A0B0C0D; // 32-bit store to 'long_ptr'
byte_value = *((char *)long_ptr); // 8-bit read from 'long_ptr'
Embedded Design Handbook July 2011 Altera Corporation

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Chapter 11: Avalon-MM Byte Ordering Considerations 11–3
Avalon-MM Interface Ordering
The interconnect handles dynamic bus sizing for narrow to wide and wide to narrow
transfers when the master and slave port widths connected together do not match.
When a wide master accesses a narrow slave, the interconnect serializes the data by
presenting the lower bytes to the slave first. When a narrow master accesses a wide
slave, the interconnect performs byte lane realignment to ensure that the master
accesses the appropriate byte lanes of the slave.

f For more information, refer to the System Interconnect Fabric for Memory-Mapped
Interfaces chapter of the SOPC Builder User Guide.

Dynamic Bus Sizing DMA Examples
A direct memory access (DMA) engine moves memory contents from a source
location to a destination location. Because SOPC Builder supports dynamic bus sizing,
the data widths of the source and destination memory in the examples do not need to
match the width of the DMA engine. The DMA engine reads data from a source base
address and sequentially increases the address until the last read completes. The
DMA engine also writes data to a destination base address and sequentially increases
the address until the last write completes.
July 2011 Altera Corporation Embedded Design Handbook

http://www.altera.com/literature/ug/ug_sopc_builder.pdf

11–4 Chapter 11: Avalon-MM Byte Ordering Considerations
Avalon-MM Interface Ordering
Figure 11–1, Figure 11–2, and Figure 11–3 illustrate example DMA transfers to and
from memory of differing data widths. The source memory is populated with an
increasing sequential pattern starting with the value 0 at base address 0. The DMA
engine begins transferring data starting from the base address of the source memory
to the base address of the destination memory. The interconnect always transfers the
lower bytes first when any width adaptation takes place. The width adaptation occurs
automatically within the interconnect.

Figure 11–1. 16-Bit to 32-Bit Memory DMA Transfer

32-Bit DMA

1 0

3 2

5 4

7 6

9 8

11 10

13 12

15 14

1 0

5 4

3 2

7 6

Interconnect

9 8

13 12

11 10

15 14

1 0

5 4

3 2

7 6

9 8

13 12

11 10

15 14

16-Bit Source Memory 32-Bit Destination Memory

31 0

31 0

015

Address 0

Address 2

Address 4

Address 6

Address 8

Address 10

Address 14

Address 12

Address 0

Address 4

Address 8

Address 12

Address 0

Address 4

Address 8

Address 12
Embedded Design Handbook July 2011 Altera Corporation

Chapter 11: Avalon-MM Byte Ordering Considerations 11–5
Avalon-MM Interface Ordering
Figure 11–2. 32-Bit to 64-Bit Memory DMA Transfer

32-Bit DMA

1 0

5 4

3 2

7 6

Interconnect

9 8

13 12

11 10

15 14

31 0

Address 0

Address 4

Address 8

Address 12

1 0

5 4

3 2

7 6

9 8

13 12

11 10

15 14

31 0

Address 0

Address 4

Address 8

Address 12

13 1215 14Address 8 9 811 10

1 05 4 3 27 6Address 0

063

32-Bit Source Memory 64-Bit Destination Memory
July 2011 Altera Corporation Embedded Design Handbook

11–6 Chapter 11: Avalon-MM Byte Ordering Considerations
Nios II Processor Data Accesses
Nios II Processor Data Accesses
In the Nios II processor, the internal arithmetic byte ordering and the bus byte
ordering are both little endian. Internally, the processor and its compiler map the least
significant byte of a value to the lowest byte offset in memory.

Figure 11–3. 128-Bit to 16-Bit Memory DMA Transfer

32-Bit DMA

1 0

5 4

3 2

7 6

9 8

13 12

11 10

15 14

31 0

Address 0

Address 4

Address 8

Address 12

17 16

21 20

19 18

23 22

25 24

29 28

27 26

31 30

Address 16

Address 20

Address 24

Address 28

1 0

5 4

3 2

7 6

9 8

13 12

11 10

15 14

Address 0

Address 4

Address 8

Address 12

17 16

21 20

19 18

23 22

25 24

29 28

27 26

31 30

Address 16

Address 20

Address 24

Address 28

1 0

3 2

Interconnect

5 4

7 6

15 0

Address 0

Address 2

Address 4

Address 8

29 2831 30Address 16 25 2427 26

Address 0

0127

128-Bit Source Memory 16-Bit Destination Memory

21 2023 22 17 1619 18

1 05 4 3 27 613 1215 14 9 811 10 29 28

31 30

Address 28

Address 30
Embedded Design Handbook July 2011 Altera Corporation

Chapter 11: Avalon-MM Byte Ordering Considerations 11–7
Nios II Processor Data Accesses
For example, Figure 11–4 shows storing the 32-bit value 0x0A0B0C0D to the variable
Y. The action maps the least significant byte 0x0D to offset 0 of the memory used to
store the variable.

The Nios II processor is a 32-bit processor. For data larger than 32 bits, the same
mapping of the least significant byte to lowest offset occurs. For example, if the value
0x0807060504030201 is stored to a 64-bit variable, the least significant byte 0x01 of the
variable is stored to byte offset 0 of the variable in memory. The most significant byte
0x08 of the variable is stored to byte offset 7 of the variable in memory. The processor
writes the least significant four bytes 0x04030201 of the variable to memory first,
followed by the most significant four bytes 0x08070605.

The master interfaces of the Nios II processor comply with Avalon-MM bus byte
ordering by providing read and write data to the interconnect in descending bit order
with bits 7 down to 0 representing byte offset 0. Because the Nios II processor uses a
32-bit data path, the processor can access the interconnect with seven different aligned
accesses. Table 11–1 shows the seven valid write accesses that the Nios II processor
can present to the interconnect.

Figure 11–4. Nios II 32-Bit Byte Mapping

Y = 0x0A0B0C0D;

0

1

2

3

Offset

0D

0C

0B

0A

Memory Mapping

In
cr

ea
si

ng
 A

dd
re

ss
es

Table 11–1. Nios II Write Data Byte Mapping

Access Size
(Bits)

Offset
(Bytes) Value Byte Enable

(Bits 3:0)
Write Data
(Bits 31:24)

Write Data
(Bits 23:16)

Write Data
(Bits 15:8)

Write Data
(Bits 7:0)

8 0 0x0A 0001 — — — 0x0A

8 1 0x0A 0010 — — 0x0A —

8 2 0x0A 0100 — 0x0A — —

8 3 0x0A 1000 0x0A — — —

16 0 0x0A0B 0011 — — 0x0A 0x0B

16 2 0x0A0B 1100 0x0A 0x0B — —

32 0 0x0A0B0C0D 1111 0x0A 0x0B 0x0C 0x0D
July 2011 Altera Corporation Embedded Design Handbook

11–8 Chapter 11: Avalon-MM Byte Ordering Considerations
Adapting Processor Masters to be Avalon-MM Compliant
The code fragment shown in Example 11–2 generates all seven of the accesses
described in Table 11–1 in the order presented in the table, where BASE is a location in
memory aligned to a four-byte boundary.

Adapting Processor Masters to be Avalon-MM Compliant
Because the way the Nios II processor presents data to the interconnect is Avalon-MM
compliant, no extra effort is required to connect the processor to the interconnect. This
section describes how to modify non-Avalon-MM compliant processor masters to
achieve Avalon-MM compliance.

Some processors use a different arithmetic byte ordering than the Nios II processor
uses, and as a result, typically use a different bus byte ordering than the Avalon-MM
interface specification supports. When connecting one of these processors directly to
the interconnect in a system containing other masters such as a Nios II processor,
accesses to the same address result in accessing different physical byte lanes of the
slave port. Mixing masters and slaves that conform to different bus byte ordering
becomes nearly impossible to manage at a system level. These mixed bus byte
ordering systems are difficult to maintain and debug. Altera requires that the master
interfaces of any processors you add to your system are Avalon-MM compliant.

Processors that use a big endian arithmetic byte ordering, which is opposite to what
the Nios II processor implements, map the most significant byte of the variable to the
lowest byte offset of the variable in memory. For example, Figure 11–5 shows how a
PowerPC processor core stores the 32-bit value 0x0A0B0C0D to the memory
containing the variable Y. The PowerPC stores the most significant byte, 0x0A, to
offset 0 of the memory containing the variable.

Example 11–2. Nios II Write Data Byte Mapping Code

IOWR_8DIRECT(BASE, 0, 0x0A);
IOWR_8DIRECT(BASE, 1, 0x0A);
IOWR_8DIRECT(BASE, 2, 0x0A);
IOWR_8DIRECT(BASE, 3, 0x0A);
IOWR_16DIRECT(BASE, 0, 0x0A0B);
IOWR_16DIRECT(BASE, 2, 0x0A0B);
IOWR_32DIRECT(BASE, 0, 0x0A0B0C0D);

Figure 11–5. Power PC 32-Bit Byte Mapping

Y = 0x0A0B0C0D;

0

1

2

3

Offset

0A

0B

0C

0D

Memory Mapping

In
cr

ea
si

ng
 A

dd
re

ss
es
Embedded Design Handbook July 2011 Altera Corporation

Chapter 11: Avalon-MM Byte Ordering Considerations 11–9
Adapting Processor Masters to be Avalon-MM Compliant
This arithmetic byte ordering is the opposite of the ordering shown in “Nios II
Processor Data Accesses” on page 11–6. Because the arithmetic byte ordering internal
to the processor is independent of data bus byte ordering external to the processor,
you can adapt processor masters with non-Avalon-MM compliant bus byte ordering
to present Avalon-MM compliant data to the interconnect.

The following sections describe the bus byte ordering for the two most common
processors that are not Avalon-MM complaint:

■ “PowerPC Bus Byte Ordering”

■ “ARM BE-32 Bus Byte Ordering”

PowerPC Bus Byte Ordering
The byte positions of the PowerPC bus byte ordering are aligned with the byte
positions of the Avalon-MM interface specification; however, the bits within each byte
are misaligned. PowerPC processor cores use an ascending bit ordering when the
masters are connected to the interconnect. For example, a 32-bit PowerPC core labels
the bus data bits 0 up to 31. A PowerPC core considers bits 0 up to 7 as byte offset 0.
This layout differs from the Avalon-MM interface specification, which defines byte
offset 0 as data bits 7 down to 0. To connect a PowerPC processor to the interconnect,
you must rename the bits in each byte lane as Figure 11–6 shows.

Figure 11–6. PowerPC Bit-Renaming Wrapper

PowerPC Wrapper

PowerPC Processor
Core

WD[0..7]
WD[8..15]
WD[16..23]
WD[24..31]

System Interconnect

writedata[0..31]

readdata[0..31]

byteenable[0..3]

read
write

waitrequest

address[a..0]

readatavalid

burstcount[b..0]

writedata[31..0]

readdata[31..0]

byteenable[3..0]

read
write

waitrequest

address[a..0]

readatavalid

burstcount[b..0]

BE[3..0] BE[0..3]

WD[7..0]
WD[15..8]
WD[23..16]
WD[31..24]

RD[0..7]
RD[8..15]
RD[16..23]
RD[24..31]

RD[7..0]
RD[15..8]
RD[23..16]
RD[31..24]
July 2011 Altera Corporation Embedded Design Handbook

11–10 Chapter 11: Avalon-MM Byte Ordering Considerations
Adapting Processor Masters to be Avalon-MM Compliant
In Figure 11–6, bit 0 is renamed to bit 7, bit 1 is renamed to bit 6, bit 2 is renamed to bit
5, and so on. By renaming the bits in each byte lane, byte offset 0 remains in the lower
eight data bits. You must rename the bits in each byte lane separately. Renaming the
bits by reversing all 32 bits creates a result that is not Avalon-MM compliant. For
example, byte offset 0 would shift to data bits 31 down to 24, not 7 down to 0 as
required.

1 Because the bits are simply renamed, this additional hardware does not occupy any
additional FPGA resources nor impact the fMAX of the data interface.

ARM BE-32 Bus Byte Ordering
Some ARM® cores use a bus byte ordering commonly referred to as big endian 32
(BE-32). BE-32 processor cores use a descending bit ordering when the masters are
connected to the interconnect. For example, an ARM BE-32 processor core labels the
data bits 31 down to 0. Such a processor core considers bits 31 down to 24 as byte
offset 0. This layout differs from the Avalon-MM specification, which defines byte 0 as
data bits 7 down to 0.

A BE-32 processor core accesses memory using the bus mapping shown in Table 11–2.

The write access behavior of the BE-32 processor shown in Table 11–2 differs greatly
from the Nios II processor behavior shown in Table 11–1. The only consistent access is
the full 32-bit write access. In all the other cases, each processor accesses different byte
lanes of the interconnect.

Table 11–2. ARM BE-32 Write Data Mapping

Access Size
(Bits)

Offset
(Bytes) Value Byte Enable

(Bits 3:0)
Write Data
(Bits 31:24)

Write Data
(Bits 23:16)

Write Data
(Bits 15:8)

Write Data
(Bits 7:0)

8 0 0x0A 1000 0x0A — — —

8 1 0x0A 0100 — 0x0A — —

8 2 0x0A 0010 — — 0x0A —

8 3 0x0A 0001 — — — 0x0A

16 0 0x0A0B 1100 0x0A 0x0B — —

16 2 0x0A0B 0011 — — 0x0A 0x0B

32 0 0x0A0B0C0D 1111 0x0A 0x0B 0x0C 0x0D
Embedded Design Handbook July 2011 Altera Corporation

Chapter 11: Avalon-MM Byte Ordering Considerations 11–11
Adapting Processor Masters to be Avalon-MM Compliant
To connect a processor with BE-32 bus byte ordering to the interconnect, rename each
byte lane as Figure 11–7 shows.

1 As in the case of the PowerPC wrapper logic, the ARM BE-32 wrapper does not
consume any FPGA logic resources or degrade the fMAX of the interface.

ARM BE-8 Bus Byte Ordering
Newer ARM processor cores offer a mode called big endian 8 (BE-8). BE-8 processor
master interfaces are Avalon-MM compliant. Internally, the BE-8 core uses a big
endian arithmetic byte ordering; however, at the bus level, the core maps the data to
the interconnect with the little endian orientation the Avalon-MM interface
specification requires.

1 This byte reordering sometimes requires special attention. For more information, refer
to “Arithmetic Byte Reordering” on page 11–12.

Other Processor Bit and Byte Orders
There are numerous other ways to order the data leaving or entering a processor
master interface. For those cases, the approach to achieving Avalon-MM compliance is
the same. In general, apply the following three steps to any processor core to ensure
Avalon-MM compliance:

1. Identify the bit order.

2. Identify the location of byte offset 0 of the master.

Figure 11–7. ARM BE-32 Byte-Renaming Wrapper

ARM Wrapper

ARM BE-32
Processor Core

WD[31..24]
WD[23..16]
WD[15..8]
WD[7..0]

System Interconnect

writedata[31..0]

readdata[31..0]

byteenable[3..0]

read
write

waitrequest

address[a..0]

readatavalid

burstcount[b..0]

writedata[31..0]

readdata[31..0]

byteenable[3..0]

read
write

waitrequest

address[a..0]

readatavalid

burstcount[b..0]

BE[3] BE[0]

WD[7..0]
WD[15..8]
WD[23..16]
WD[31..24]

RD[31..24]
RD[16..23]
RD[15..8]
RD[7..0]

RD[7..0]
RD[15..8]
RD[23..16]
RD[31..24]

BE[0] BE[3]
BE[1] BE[2]
BE[2] BE[1]
July 2011 Altera Corporation Embedded Design Handbook

11–12 Chapter 11: Avalon-MM Byte Ordering Considerations
Adapting Processor Masters to be Avalon-MM Compliant
3. Create a wrapper around the processor core that renames the data signals so that
byte 0 is located on data 7 down to 0, byte 1 is located on data 15 down to 8, and so
on.

Arithmetic Byte Reordering
Altering your system to conform to Avalon-MM byte ordering modifies the internal
arithmetic byte ordering of multibyte values as seen by the software. For example, an
Avalon-MM compliant big endian processor core such as an ARM BE-8 processor
accesses memory using the bus mapping shown in Table 11–3.

The big endian ARM BE-8 mapping (Table 11–3) matches the little endian Nios II
processor mapping (Table 11–1) for all single byte accesses. If you ensure that your
processor is Avalon-MM compliant, you can easily share individual bytes of data
between big and little endian processors and peripherals.

However, making sure that the processor data master is Avalon-MM compliant only
ensures that single byte accesses map to the same physical byte lanes of a slave port.
In the case of multibyte accesses, the same byte lanes are accessed between the BE-8
and little endian processor; however, the value is not interpreted consistently. This
mismatch is only important when the internal arithmetic byte ordering of the
processor differs from other peripherals and processors in your system.

To correct the mismatch, you must perform arithmetic byte reordering in software for
multibyte accesses. Interpretation of the data by the processor can vary based on the
arithmetic byte ordering used by the processor and other processors and peripherals
in the system.

Table 11–3. ARM BE-8 Write Data Mapping

Access Size
(Bits)

Offset
(Bytes) Value Byte Enable

(Bits 3:0)
Write Data
(Bits 31:24)

Write Data
(Bits 23:16)

Write Data
(Bits 15:8)

Write Data
(Bits 7:0)

8 0 0x0A 0001 — — — 0x0A

8 1 0x0A 0010 — — 0x0A —

8 2 0x0A 0100 — 0x0A — —

8 3 0x0A 1000 0x0A — — —

16 0 0x0A0B 0011 — — 0x0B 0x0A

16 2 0x0A0B 1100 0x0B 0x0A — —

32 0 0x0A0B0C0D 1111 0x0D 0x0C 0x0B 0x0A
Embedded Design Handbook July 2011 Altera Corporation

Chapter 11: Avalon-MM Byte Ordering Considerations 11–13
Adapting Processor Masters to be Avalon-MM Compliant
For example, consider a 32-bit ARM BE-8 processor core that reads from a 16-bit little
endian timer peripheral by performing a 16-bit read access. The ARM processor treats
byte offset 0 as the most significant byte of any word. The timer treats byte offset 0 as
the least significant byte of the 16-bit value. When the processor reads a value from
the timer, the bytes of the value, as seen by software, are swapped. Figure 11–8 shows
the swapping. A timer counter value of 0x0800 (2,048 clock ticks) is interpreted by the
processor as 0x0008 (8 clock ticks) because the arithmetic byte ordering of the
processor does not match the arithmetic byte ordering of the timer component.

For the values to be interpreted accurately, the processor must either read each byte
lane individually and then combine the two byte reads into a single 16-bit value in
software, or read the single 16-bit value and swap the bytes in software.

The same issue occurs when you apply a bus-level renaming wrapper to an ARM
BE-32 or PowerPC core. Both processor cores treat byte offset 0 as the most significant
byte of any value. As a result, you must handle any mismatch between arithmetic
byte ordering of data used by the processor and peripherals in your system.

On the other hand, if the timer in Figure 11–8 were to treat the most significant byte of
the 16-bit value as byte 0 (big endian ordering), the data would arrive at the processor
master in the same arithmetic byte ordering used by the processor. If the processor
and the component internally implement the same arithmetic byte ordering, no
software swapping of bytes is necessary for multibyte accesses.

Figure 11–8. ARM BE-8 Processor Accessing a Little Endian Peripheral

Value = 0x0800
Little Endian Timer

0x00

15 0

Interconnect

32-Bit ARM BE-8 Processor
16-Bit Value Read = 0x0008

8 7

X X0x00 0x08

15 08 731 1624 23

0x08 0x00X X

0x08

0x08 0x00
July 2011 Altera Corporation Embedded Design Handbook

11–14 Chapter 11: Avalon-MM Byte Ordering Considerations
System-Wide Design Recommendations
Figure 11–9 shows how the value 0x0800 of a big endian timer is read by the
processor. The value is retained without the need to perform any byte swapping in
software after the read completes.

System-Wide Design Recommendations
In the previous sections, we discussed arithmetic and bus byte ordering from a
processor perspective. The same concepts directly apply to any component in your
system. Any component containing Avalon-MM slave ports must also adhere to the
Avalon-MM specification, which states that the data bits be defined in descending
order with byte offset 0 positioned at bits 7 down to 0. As long as the component’s
slave port is Avalon-MM compliant, you can use any arithmetic byte ordering within
the component.

System-Wide Arithmetic Byte Ordering
Typically, the most convenient arithmetic byte ordering to use throughout a system is
the ordering the processor uses, if one is present. If the processor uses a different
arithmetic byte ordering than the rest of the system, you must write software that
rearranges the ordering for all multibyte accesses.

Figure 11–9. ARM BE-8 Processor Accessing a BE-8 Peripheral

Value = 0x0008
BE-8 Timer

0x00

15 0

Interconnect

32-Bit ARM BE-8 Processor
16-Bit Value Read = 0x0800

8 7

X X0x08 0x00

15 08 731 1624 23

0x00 0x08X X

0x08

0x00 0x08
Embedded Design Handbook July 2011 Altera Corporation

Chapter 11: Avalon-MM Byte Ordering Considerations 11–15
System-Wide Design Recommendations
The majority of the IP provided by Altera that contains an Avalon-MM master or
slave port uses little endian arithmetic byte ordering. If your system consists
primarily of components provided by Altera, it is much easier to make the remainder
of your system use the same little endian arithmetic byte ordering. When the entire
system uses components that use the same arithmetic byte ordering and Avalon-MM
bus byte ordering, arithmetic byte reordering within the processor or any component
performing data accesses is not necessary.

Altera recommends writing your driver code to handle both big and little endian
arithmetic byte ordering. For example, if the peripheral is little endian, write the
peripheral driver to execute on both big and little endian processors. For little endian
processors, no byte swapping is necessary. For big endian processors, all multibyte
accesses requires a byte swap. Driver code selection is controlled at compile time or
run time depending on the application and the peripheral.

System-Wide Arithmetic Byte Reordering in Software
If you cannot modify your system so that all the components use the same arithmetic
byte ordering, you must implement byte reordering in software for multibyte
accesses. Many processors today include instructions to accelerate this operation. If
your processor does not have dedicated byte-reordering instructions, Example 11–3
shows how you can implement byte reordering in software by leveraging the macros
for 16-bit and 32-bit data.

1 Choose the appropriate instruction or macro to perform the byte reordering based on
the width of the value that requires arithmetic byte reordering. Because arithmetic
byte ordering only applies to individual values stored in memory or peripherals, you
must reverse the bytes of the value without disturbing the data stored in neighboring
memory locations. For example, if you load a 16-bit value from a peripheral that uses
a different arithmetic byte ordering, you must swap two bytes in software. If you
attempt to load two 16-bit values as a packed 32-bit read access, you must swap the
individual 16-bit values independently. If you attempt to swap all four bytes at once,
the two individual 16-bit values are swapped, which is not the original intent of the
software developer.

Example 11–3. Software Arithmetic Byte Reordering

/* Perform 16-bit byte reordering */
#define SW_16_BIT_ARITHMETIC_REORDERING (data) (\
 (((data) << 8) & 0xFF00) | \
 (((data) >> 8) & 0x00FF) \
)

/* Perform 32-bit byte reordering */
#define SW_32_BIT_ARITHMETIC_REORDERING (data) (\
 (((data) << 24) & 0xFF000000) | \
 (((data) << 8) & 0x00FF0000) | \
 (((data) >> 8) & 0x0000FF00) | \
 (((data) >> 24) & 0x000000FF) \
)

July 2011 Altera Corporation Embedded Design Handbook

11–16 Chapter 11: Avalon-MM Byte Ordering Considerations
Document Revision History
Document Revision History
Table 11–4 shows the revision history for this document.

Table 11–4. Document Revision History

Date Version Changes

July 2011 1.1 Remove mention of Qsys.

January 2011 1.0 Initial release.
Embedded Design Handbook July 2011 Altera Corporation

	11. Avalon-MM Byte Ordering Considerations
	Endianness
	Hardware Endianness
	Software Endianness

	Avalon-MM Interface Ordering
	Dynamic Bus Sizing DMA Examples

	Nios II Processor Data Accesses
	Adapting Processor Masters to be Avalon-MM Compliant
	PowerPC Bus Byte Ordering
	ARM BE-32 Bus Byte Ordering
	ARM BE-8 Bus Byte Ordering
	Other Processor Bit and Byte Orders
	Arithmetic Byte Reordering

	System-Wide Design Recommendations
	System-Wide Arithmetic Byte Ordering
	System-Wide Arithmetic Byte Reordering in Software

	Document Revision History

