
101 Innovation Drive
San Jose, CA 95134
www.altera.com

TU-N2060305-2.0

Tutorial

Using Tightly Coupled Memory with the Nios II Processor

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
July 2011

Subscribe

Using Tightly Coupled Memory with the Nios II Processor
Tutorial

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=UG-00000

Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

July 2011 Altera Corporation
Contents
Chapter 1. Using Tightly Coupled Memory with the Nios II Processor
Reasons for Using Tightly Coupled Memory . 1–1
Tradeoffs . 1–1
Guidelines for Using Tightly Coupled Memory . 1–2

Hardware Guidelines . 1–2
Software Guidelines . 1–3

Locating Functions in Tightly Coupled Memory . 1–3
Tightly Coupled Memory Interface . 1–4

Restrictions . 1–4
Dual Port Memories . 1–5

Building a Nios II System with Tightly Coupled Memory . 1–5
Hardware and Software Requirements . 1–6
Modify the Example Design to Include Tightly Coupled Memories . 1–6
Create the Tightly Coupled Memories . 1–7
Connect and Position the Tightly Coupled Memories . 1–8
Add a Performance Counter . 1–10

Generate the Qsys System . 1–11
Run the Tightly Coupled Memories Examples from the Nios II Command Shell 1–11
Program and Run the Tightly Coupled Memory Project . 1–13
Understanding the Tcl Scripts . 1–14

Timer Memory . 1–14
Exception Stack . 1–15
Timer Definitions . 1–15

peripheral_subsystem_sys_clk_timer . 1–15
peripheral_subsystem_high_res_timer . 1–16

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–1
Using Tightly Coupled Memory with the Nios II Processor Tutorial

iv Contents
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

July 2011 Altera Corporation
1. Using Tightly Coupled Memory with
the Nios II Processor
This document describes how to use tightly coupled memory in designs that include a
Nios® II processor and discusses some possible applications. It also includes a tutorial
that guides you through the process of building a Nios II system with tightly coupled
memory.

The Nios II architecture includes tightly coupled master ports that provide
guaranteed fixed low-latency access to on-chip memory for performance-critical
applications. Tightly coupled master ports can be connected to instruction memory
and data memory, to allow fixed low-latency read access to executable code as well as
fixed low-latency read or write access to data. Tightly coupled masters are dedicated
instruction or data master ports on the Nios II core, which is different from the
embedded processor’s instruction and data master ports.

f This document assumes you are familiar with the Nios II tightly coupled memory. For
more information, refer to the Processor Architecture chapter in the Nios II Processor
Reference Handbook.

Reasons for Using Tightly Coupled Memory
You can implement one or more of the following functions or modules using tightly
coupled memory to enhance the performance of your system:

■ Separate exception stack for use only while handling interrupts

■ Fast data buffers

■ Fast sections of code

■ Fast interrupt handler

■ Critical loop

■ Constant access time that is guaranteed not to have arbitration delays

For programs with modest memory requirements, all of the code and data can be held
in a tightly coupled memory pair.

Tradeoffs
There are design tradeoffs when using tightly coupled memory, including the
following:

■ You must balance the benefits of more general speed enhancement provided by a
cache, averaged over time, with the specific dedicated memory block consumed
by a tightly coupled memory whose sole purpose is to make a single part of the
code faster.

■ Software guarantees that performance-critical code or data is located in tightly
coupled memory. That particular piece of code or data achieves high performance.
Locating the code within tightly coupled memory eliminates cache overhead such
as cache flushing, loading, or invalidating.
Using Tightly Coupled Memory with the Nios II Processor Tutorial

http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf

1–2 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Guidelines for Using Tightly Coupled Memory
■ You must divide on-chip memory equitably to provide the best overall
combination of tightly coupled instruction memory, tightly coupled data memory,
instruction cache, and data cache.

Guidelines for Using Tightly Coupled Memory
This section details the guidelines and limitations that should be taken into
consideration when designing the hardware and software with tightly coupled
memory.

Hardware Guidelines
The following guidelines apply to Nios II hardware designs that include tightly
coupled memory:

■ Tightly coupled masters are presented as additional master ports on the Nios II
processor.

■ An On-Chip Memory component is the only memory that can connect to a tightly
coupled master port on the Nios II core.

■ A tightly coupled master on a processor must connect to exactly one on-chip
memory slave port. This slave port cannot be shared by any other master port.

■ Each on-chip memory can be connected to only one tightly coupled master even if
it is a dual port memory.

■ The availability of the data and instruction master ports for the tightly coupled
memory is dependent on the type of Nios II core used.

■ When using the On-Chip Memory component as a tightly coupled memory for
Nios II, you must always create it as a RAM, not as a ROM. Tightly coupled
memories configured as ROM would result in failure.

■ To conserve the logic elements, use one 2-kilobyte (KB) tightly coupled memory,
rather than two 1-KB tightly coupled memories.
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–3
Guidelines for Using Tightly Coupled Memory
Figure 1 is a block diagram of a simple Nios II system that includes tightly coupled
memories and other Qsys System Integration Tool components.

Software Guidelines
The following two guidelines apply to Nios II software that uses tightly coupled
memory:

■ Software accesses tightly coupled memory addresses just like any other addresses.

■ Cache operations have no effect when targeting tightly coupled memory.

Locating Functions in Tightly Coupled Memory
Assigning data to a tightly coupled data memory also involves using a section
attribute. Alternatively, you can include the tightly coupled memory as a #define in
the system.h file. The name of the memory is followed by _BASE and is used as a
pointer to reference the tightly coupled data memory.

The software example in this tutorial provides a source code example showing how to
locate a particular source code function in a particular linker section. A function is
declared to reside within a linker section with the C section attribute in the file
timer_interrupt_latency.h. This C header file locates
timer_interrupt_latency_irq() in the .exceptions section as follows:

externvoid timer_interrupt_latency_irq (void* base, alt_u32 id)__attribute__ ((section
(".exceptions")));

The Nios II Software Build Tools (SBT) creates linker sections for each memory
module in the system. A source code function can be located within a particular
tightly coupled instruction memory simply by assigning that function to the linker
section created for that tightly coupled instruction memory.

Figure 1. Nios II System with Tightly Coupled Instruction and Data Memory

Nios II
Processor

Core

Tightly
Coupled

Instruction
Master

Port

Tightly
Coupled

Data
Master

Port

Avalon
Instruction

Master
Port

Avalon
Slave
Port

Tightly
Coupled

Slave
Port

Tightly
Coupled

Slave
Port

Avalon
Data

Master
Port

Avalon
Slave
Port

Tightly Coupled
Instruction Memory

Avalon
Slave
Port

Tightly Coupled Data Memory

Other Avalon Component

Avalon Memory Component

Avalon
Switch
Fabric

Tightly Coupled Memory Interface

Tightly Coupled Memory Interface
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–4 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Tightly Coupled Memory Interface
The Nios II SBT creates additional linker sections with address mappings that are
controlled by Qsys. For the .exceptions section, the physical address offset and
memory module in which to base that linker section is manipulated through Qsys.
You locate the .exceptions section in a memory module covered by a tightly coupled
data memory using the Exception Vector field found on the Core Nios II tab of the
configuration wizard.

f For more information about the C section attribute, refer to the Developing Programs
Using the Hardware Abstraction Layer chapter in section 2 of the Nios II Software
Developer’s Handbook.

Tightly Coupled Memory Interface
The term tightly coupled memory interface refers to an Avalon®-like interface that
connects one master to one slave. Refer to Figure 1. Tightly coupled memory
interfaces connect tightly coupled masters to their tightly coupled slaves. Tightly
coupled memory interfaces are designed to be connected to one port of an on-chip
memory device. These devices are known as “altsyncrams” to Verilog HDL and
VHDL designers.

Restrictions
You must observe the following restrictions when designing with tightly coupled
memories:

■ Tightly coupled slaves must be on-chip memories.

■ Only one master and one slave can be connected to a given tightly coupled
memory interface, which makes the tightly coupled memory interface a
point-to-point connection.

■ Tightly coupled slaves have a data width of 32 bits. Tightly coupled memory
interfaces do not support dynamic bus sizing.

■ Tightly coupled slaves have a read latency of one cycle, a write latency of zero
cycles, and no wait states.

When tightly coupled memory is present, the Nios II core decodes addresses
internally to determine if the requested instructions or data reside in tightly coupled
memory. If the address resides in tightly coupled memory, the Nios II core accesses
the instruction or data through the tightly coupled memory interface. Accessing
tightly coupled memory bypasses cache memory. The processor core functions as if
cache were not present for the address span of the tightly coupled memory.
Instructions for managing the cache do not affect the tightly coupled memory, even if
the instruction specifies an address in the range occupied by a tightly coupled
memory.
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–5
Building a Nios II System with Tightly Coupled Memory
Dual Port Memories
Each tightly coupled master connects to one tightly coupled slave over a tightly
coupled interface. For this reason, it is helpful to use dual port memories with the
tightly coupled instruction master as shown in Figure 1. The tightly coupled
instruction master is incapable of performing writes because it accesses code for
execution only. Without a second memory port connected to an Avalon
Memory-Mapped (Avalon-MM) data master, the system does not have write access to
the tightly coupled instruction memory. Without write access, code cannot be
downloaded into the tightly coupled memory by the Nios II SBT for Eclipse, which
makes development and debugging difficult. Without a second port on the tightly
coupled instruction memory, no data master has access to the memory, which means
you have no way to view the contents. By making the tightly coupled instruction
memory dual port, the embedded processor’s data master can be connected to the
second port, allowing both reading and writing of data.

Building a Nios II System with Tightly Coupled Memory
This section provides a detailed list of instructions to create a Nios II system in Qsys
that uses two tightly coupled memories, one for instruction access and one for data
access. These two tightly coupled memories are connected to the Nios II processor as
shown in Figure 1 on page 1–3. Additionally, instructions are provided to build a
software project to exercise these tightly coupled memories. The output of the
software shows that the tightly coupled memories have much faster access times than
other on-chip memories.

To build a Nios II system with tightly coupled memory, perform the following steps.
These steps are described more fully in the following sections.

1. Modify an existing reference design to include tightly coupled memories.

2. Create the tightly coupled memories in Qsys.

3. Connect the tightly coupled memories to the masters.

4. Position the tightly coupled memories in the Nios II processor’s address map.

5. Specify the Nios II exception address to access tightly coupled instruction
memory.

6. Add a performance counter.

7. Generate the hardware system.

8. Create a software project to exercise the tightly coupled memories.

9. Execute the software on the new hardware design.

10. Change the Tcl scripts and recompile the design to review how the timer settings
work.
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–6 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Building a Nios II System with Tightly Coupled Memory
Hardware and Software Requirements
The following hardware and software are required to perform this exercise:

■ Nios II development tools version 11.0 or later

■ Quartus® II software version 11.0 or later

■ One of the following Altera development kit boards:

■ Nios II Embedded Evaluation Kit (NEEK), Cyclone® III Edition

■ Embedded Systems Development Kit (ESDK), Cyclone III Edition

■ Stratix® IV GX FPGA Development Kit

Modify the Example Design to Include Tightly Coupled Memories
First, create a new hardware reference design with tightly coupled memories that is
based on the Nios II Ethernet standard design example. To create this modified
reference design, perform the following steps:

1. Navigate to the Nios II Ethernet Standard Design Example web page and locate
the Nios II Ethernet Standard design example .zip file that corresponds to your
board.

2. Extract the files from the downloaded .zip file and copy the
niosii_ethernet_standard_<board> directory to a new directory named
standard_tcm.

3. In the Windows Start menu, choose Programs > Altera > Quartus II <version> to
run the Quartus II software.

4. On the File menu, click Open Project and browse to the
standard_tcm\niosii_ethernet_standard_<board>.qpf project file. Click Open.

5. On the Tools menu, click Qsys. When prompted, select
eth_std_main_system.qsys and click Open to open the Qsys design.

6. Double-click the cpu component in the list of available components on the System
Contents tab to open the Nios II processor configuration wizard.

7. Ensure that Nios II/f is selected on the Core Nios II tab.

8. Click the Caches and Memory Interfaces tab.

9. Select the number of instruction master ports in the drop-down list next to
Number of tightly coupled instruction master port(s). In this example, select
1 port.

10. Change the Instruction cache to 4 KB.

11. Select the number of instruction master ports in the drop-down list next to
Number of tightly coupled data master port(s). In this example, select 1 port.

12. Change the Data cache to 2 KB and Data Cache Line Size to 4 Bytes.

13. Click Finish to close the Nios II processor configuration wizard.

Two new master ports now appear under the cpu component called
tightly_coupled_instruction_master_0 and tightly_coupled_data_master_0. These
master ports are not yet connected to the slave ports.
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

http://www.altera.com/support/examples/nios2/exm-net-std-de.html

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–7
Building a Nios II System with Tightly Coupled Memory
Create the Tightly Coupled Memories
In this section you create two types of tightly coupled memories: a tightly coupled
instruction memory and a tightly coupled data memory.

1. In the Component Library tab, double-click On-Chip Memory in the On-Chip
subfolder of the Memories and Memory Controllers folder. The On-Chip
Memory configuration wizard appears.

2. To complete the configuration of this memory, specify the settings listed in
Table 1.

3. In the Size and Memory initialization boxes, specify the settings listed in Table 1.

4. Click Finish to close the configuration wizard.

5. Click the System Contents tab and scroll down to the onchip_memory2_0
component.

c You must name the components exactly as they appear in this tutorial. If
your component names differ from the names printed here, the software
example will not work.

6. Right-click onchip_memory2_0 and rename the component to
tightly_coupled_instruction_memory.

7. To configure a second on-chip memory, in the list of available memory
components, double-click On-Chip Memory (RAM or ROM). The On-Chip
Memory configuration wizard appears.

Table 1. On-Chip Memory Default Settings

Properties Configuration Settings

Memory type

RAM Turn this option on

Dual-Port Access Turn this option on

Read During Write Mode This option is DONT_CARE

Block type Auto

Size
Memory Width 32

Total memory size 4 KB

Read latency
Slave s1 1

Slave s2 1

Memory
initialization

Initialize memory content Turn this option on

Enable non-default initialization file Leave this option off

Enable In-System Memory Content Editor feature Leave this option off
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–8 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Building a Nios II System with Tightly Coupled Memory
8. Configure the settings that are listed in Table 2. Unlike the tightly coupled
instruction memory, this memory is single-port. Total memory size for tightly
coupled data memory is twice the size of tightly coupled instruction memory at
8 KB.

9. Click Finish to close the On-Chip Memory configuration wizard.

10. Rename the onchip_memory2_0 component to tightly_coupled_data_memory.

Connect and Position the Tightly Coupled Memories
To associate the masters with the tightly coupled memories, perform the following
steps:

1. To facilitate creating connections between the tightly coupled memory and the
Nios II processor, click each new tightly coupled memory and click Move Up to
move the individual memories just below the cpu component.

2. If necessary, click the + to expand the tightly_coupled_instruction_memory
component.

3. Using the connections panel in Qsys, connect the s1 port of
tightly_coupled_instruction_memory to the
tightly_coupled_instruction_master_0 component listed under the cpu
component. To connect a port, click the empty dot at the intersection of the s1 port
and the port you want to connect.

4. Similarly, connect the s2 port of tightly_coupled_instruction_memory to the cpu
data_master port. This connection is shown in Figure 1 on page 1–3 as the
Avalon-MM connection between the Avalon-MM data master port and the
Avalon-MM slave port on the tightly coupled instruction memory. Port s2 of this
dual-port memory is an Avalon-MM slave port, not a tightly coupled slave port
because s2 connects to an Avalon-MM master, which is not a tightly coupled
master.

5. If necessary, click the + to expand the tightly_coupled_data_memory component.

6. Connect the s1 port of tightly_coupled_data_memory to
tightly_coupled_data_master_0.

Table 2. On-Chip Memory Default Settings

Properties Configuration Settings

Memory type

RAM Turn this option on

Dual-Port Access Turn this option off

Read During Write Mode This option is DONT_CARE

Block type Auto

Size
Memory Width 32

Total memory size 8 KB

Read latency Slave s1 1

Memory
initialization

Initialize memory content Turn this option off

Enable non-default initialization file Leave this option off

Enable In-System Memory Content Editor feature Leave this option off
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–9
Building a Nios II System with Tightly Coupled Memory
7. To change the tightly coupled memories to the same clock domain as the cpu,
follow these steps:

a. Click in the Clock column next to clk1 and clk2 for the s1 and s2 ports,
respectively, of tightly_coupled_instruction_memory. A list of available clock
signals appears.

b. Select the same clock domain as the cpu from the list of available clocks to
connect this clock to the slave ports.

c. Similarly, connect reset1 and reset2 for the s1 and s2 ports, respectively, to
clk_reset of the clock source.

d. Repeat steps a-c for tightly_coupled_data_memory.

8. In the Base column, enter the base addresses in Table 3 for all tightly coupled
memories.

The end addresses automatically update to reflect the memory size that you
specified in the configuration wizard. The base address specification is important.
Tightly coupled memories must be mapped so that their addresses do not overlap
with the embedded processor’s memories and peripherals that are connected to its
Avalon-MM instruction and data masters.

Figure 2 shows the complete system.

Table 3. Base Addresses for Tightly Coupled Memories

Port Base

tightly_coupled_instruction_memory s1 0x20000000

tightly_coupled_instruction_memory s2 0x20000000

tightly_coupled_data_memory s2 0x20002000

Figure 2. Connections for Tightly Coupled Memories
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–10 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Building a Nios II System with Tightly Coupled Memory
To simplify address decoding, map the high-order address bit to a unique location.
By limiting the decoding logic to one bit, you minimize the effect of address
decoding on fMAX. The Nios II component works correctly even if the address map
is not optimal; however, it displays a warning during system generation.

As an example of optimal address mapping, if all the normal memories and
peripherals in your system occupy addresses below 0x2000000, mapping your
tightly coupled memories at addresses from 0x2000000 and above satisfies this
requirement.

9. To set the exception address of the Nios II processor, open the Nios II processor’s
configuration wizard. On the Core Nios II tab, in the Exception vector memory:
list, select tightly_coupled_instruction_memory_s1.

The address Offset fields are populated automatically and are indexed from the
base address specified for the memory module on the System Contents tab.

Add a Performance Counter
Add a performance counter peripheral so you can compare the performance of the
reads and writes to tightly coupled memory to other memories. To add the
performance counter, complete the following steps:

1. In the Component Library tab, click Peripherals to expand the list of available
components.

2. Under Debug and Performance, double-click Performance Counter Unit to open
the Performance Counter configuration wizard.

3. Click Finish, accepting the default setting of the 3 simultaneously-measured
sections.

4. Be sure that the component is named performance_counter.

5. Move the component up just below the tightly coupled memory components.
Connect the control_slave port of the performance_counter to the cpu’s
data_master port. Figure 3 shows these connections.

6. In performance_counter, connect clk to the same clock domain as cpu and reset
to clk_reset of the clock source.
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–11
Generate the Qsys System
7. In the Base column, change the base address of performance_counter to
0x09000000.

Generate the Qsys System
To generate and compile the hardware system, perform the following steps:

1. In the Generation tab, click Generate. Click Save to save the changes in the Qsys
system.

2. In the Quartus II software, on the Processing menu, click Start Compilation.

3. When the Quartus II software compilation is finished, on the Tools menu, click
Programmer to program the newly generated
niosii_ethernet_standard_<board>.sof into the FPGA.

Run the Tightly Coupled Memories Examples from the Nios II Command
Shell

To run the tightly coupled memories example from the Nios II command shell,
perform the following steps:

1. To open a Nios II command shell under Windows, in the Start menu, point to
Programs > Altera > Nios II EDS <version number>, and click Nios II <version
number> Command Shell.

2. Navigate to the working directory for your project. The following steps refer to
this directory as <project_directory>.

3. Ensure that the working directory and all subdirectories are writable by typing the
following command:

chmod -R +w . r

Figure 3. Connections for the Performance Counter
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–12 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Run the Tightly Coupled Memories Examples from the Nios II Command Shell
4. Download the tcm.zip file from the Altera web page for the Tightly Coupled
Memory tutorial and unzip it into the <project_directory> directory. Figure 4 shows
the directory structure for the unzipped files.

5. Change to the software_examples/app/tcm_isr subdirectory of your
<project_directory> by typing the following command:

cd software_examples/app/tcm_isr r
6. Create and build the application by typing the following command:

./create-this-app r
7. The linker script file, linker.x in the bsp/timer_hal directory includes a new

isrs_region located in tightly coupled instruction memory which is adjacent to
the tightly_coupled_instruction_memory region. Example 1 shows the new
region.

Figure 4. Project Directory after Unzipping the Files

standard_tcm

software_examples

app

bsp

tcm_isr

timer_hal

Example 1. isrs_region Listing in linker.x File

MEMORY
{
:
:
tightly_coupled_instruction_memory : ORIGIN = 0x20000120, LENGTH = 1664
timer_isrs_region : ORIGIN = 0x200007a0, LENGTH = 2048
:
:
}

Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

http://www.altera.com/support/examples/nios2/exm-tightly-coupled-mem.html

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–13
Program and Run the Tightly Coupled Memory Project
8. The tcmisr.objdump in the app/tcm_isr directory defines the .isrs section located
in the tightly coupled instruction memory. Example 2 shows part of this file.

Program and Run the Tightly Coupled Memory Project
To program and run a tightly coupled memory project, perform the following steps:

1. To open a terminal session to capture messages from the Nios II processor, type the
following command:

nios2-terminal r
If your development board includes more than one JTAG cable, you must specify
which cable you are communicating with as an argument to the nios2-terminal
command. To do so, first type the following command:

jtagconfig -r r

Figure 5 shows some sample output from the jtagconfig command. This output
shows that the active JTAG cable is number 2. Substitute the number of your JTAG
cable for the <cable_number> variable in the following command:

nios2-terminal -c <cable_number> r
2. In your first shell, enter the following command if you have a single JTAG cable:

nios2-download -g tcm_isr.elf r
For development boards with more than one JTAG cable, enter the following
command:

nios2-download -c <cable_number> -g tcm_isr.elf r

Example 2. isrs Section Listing in tcm_isr.objdump File

Sections:
Idx Name Size VMA LMA File off Algn
 0 .entry 00000000 00000000 00000000 00001000 2**5

CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .exceptions 000001a0 20000120 20000120 00013120 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .isrs 000000c4 200007a0 200007a0 000137a0 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE
 3 .text 0000fea4 10000000 10000000 00001000 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE
 4 .rodata 00000650 1000fea4 1000fea4 00010ea4 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA
 5 .rwdata 00001ba0 100104f4 100104f4 000114f4 2**2

CONTENTS, ALLOC, LOAD, DATA, SMALL_DATA
 6 .bss 00000154 10012094 10012094 00013094 2**2

ALLOC, SMALL_DATA

Figure 5. jtagconfig Output
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–14 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Understanding the Tcl Scripts
Figure 6 is a printout of the statistics that shows the higher speeds obtained by
leveraging tightly coupled memories. Note that the number of clock cycles for
tightly coupled memory is very similar to that of the cached memory. The result
demonstrates that tightly coupled memories allow fixed low-latency read access to
executable code as well as fixed low-latency read, write, or read and write access
to data.

1 The timing numbers output varies between Nios development boards.

Understanding the Tcl Scripts
The following sections describe creating special memory regions for the timer
memory interrupt service routines and timer definitions and locating the exception
stack in the tightly coupled memory.

Timer Memory
The timer_memory_section.tcl script is located in the bsp/timer_hal directory. This
Tcl script reserves 2048 bytes of the tightly coupled instruction memory. The reserved
space is used to store the timer interrupt service routines.

The timer_memory_section.tcl script takes the tightly_coupled_instruction
memory region and separates out 2048 bytes of the memory region into a new region
called timer_isr_region. The next line of code adds a section mapping the .isrs
section to the timer_isr_region. Example 3 shows this code.

The timer_interrupt_latency.h file is also updated to reflect the change in the section
mapping of the timer_interrupt_latency_irq() timer interrupt service routine to
.isrs instead of .exceptions. The timer interrupt service routines are now stored in
the timer_isr_region.

Figure 6. Tightly Coupled Memory versus Cache Example Real-Time Measures

Example 3. Timer ISR Region

Create tightly_coupled_memory region.
add_memory_region tightly_coupled_instruction_memory $slave $offset $new_span
Create a second region called timer_isr memory_region.
add_memory_region timer_isrs_region $slave $split_offset $split_span
Create memory mapping to map .isrs to timer_isrs_region.
add_section_mapping .isrs timer_isrs_region
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–15
Understanding the Tcl Scripts
The interrupt service routines must be located in the new .isrs section. Otherwise,
the linker uses the default setting, defeating the purpose of declaring a special
memory section for the interrupt service routine.

To locate the interrupt service routines in the new .isrs section, complete the
following steps:

1. Add a section mapping to map the .isrs section to the newly added memory
region.

2. Edit your source files to ensure the interrupt service routines are mapped to the
new memory section.

3. Compile your project files and check the linker.x and tcm_isr.objdump files to
ensure that the section mapping and memory regions are declared correctly and
contain the interrupt service routine.

f For more information about linker memory regions, refer to the Nios II Software Build
Tools chapter in the Nios II Software Developer’s Handbook.

Exception Stack
The timer_memory_section.tcl script locates the exception stack in the
tightly_coupled_data_memory region. Example 4 shows this code.

Timer Definitions
The following sections describe peripheral_subsystem_sys_clk_timer and
peripheral_subsystem_high_res_timer.

peripheral_subsystem_sys_clk_timer
The timer_definition.tcl script is located in the bsp/timer_hal directory. The script
defines the timers as follows:

set_setting hal.sys_clk_timer peripheral_subsystem_sys_clk_timer
set_setting hal.timestamp_timer none

This script is essential for the clocks definitions. The software driver
hal.sys_clk_timer must be driven by the hardware clock named
peripheral_subsystem_sys_clk_timer. Connecting hal.sys_clk_timer to any other
hardware timer results in a compilation error. The following exercise demonstrates
this point.

1. Delete or rename the Makefile in the app/tcm_isr folder. Then delete or rename
public.mk from the bsp/timer_hal folder.

Example 4. Exception Stack

Locate the exception stack to tightly coupled data memory.
set_setting hal.linker.enable_exception_stack TRUE
set_setting hal.linker.exception_stack_memory_region_name tightly_coupled_data_memory.
aset_setting hal.linker.exception_stack_size 1024
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

1–16 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Understanding the Tcl Scripts
2. Open the timer_definition.tcl file and change
peripheral_subsystem_sys_clk_timer to
peripheral_subsystem_high_res_timer as follows:

set_setting hal.sys_clk_timer peripheral_subsystem_high_res_timer
set_setting hal.timestamp_timer none

3. Save timer_definition.tcl.

4. Return to your shell and recreate the application by typing:

./create-this-app r
5. Figure 7 shows the error. Setting hal.sys_clk_timer to any other timers except for

peripheral_subsystem_sys_clk_timer results in the same error message.

peripheral_subsystem_high_res_timer
The hardware timer called peripheral_subsystem_high_res_timer calculates
interrupt latency. timer_interrupt_latency_init(), defined in
timer_interrupt_latency.c, installs an interrupt service routine to handle
peripheral_subsystem_high_res_timer. Therefore,
peripheral_subsystem_high_res_timer must not be tied to the software timestamp
driver, hal.timestamp_timer; it is set to none. Because
peripheral_subsystem_sys_clk_timer is used for hal.sys_clk_timer, it must not be
used for hal.timestamp_timer.

The following exercise shows this point:

1. If you have not already done so, delete or rename Makefile in the app/tcm_isr
folder. Delete or rename public.mk in the bsp/timer_hal folder.

2. Open the timer_definition.tcl file and change the setting of hal.timestamp_timer
from none to peripheral_subsystem_high_res_timer as follows:

set_setting hal.sys_clk_timer peripheral_subsystem_sys_clk_timer
set_setting hal.timestamp_timer peripheral_subsystem_high_res_timer

3. Save timer_definition.tcl.

4. Return to your shell and recreate the application by typing the following
command:

./create-this-app r

Figure 7. Error Message after Changing the hal.sys_clk_timer
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

Chapter 1: Using Tightly Coupled Memory with the Nios II Processor 1–17
Understanding the Tcl Scripts
5. Figure 8 shows the error that you get. Setting hal.timestamp_timer to
peripheral_subsystem_sys_clk_timer or
peripheral_subsystem_high_res_timer results in the same error message. Setting
hal.timestamp_timer to other hardware timers in the system will not result in the
error message in Figure 8.

Figure 8. Error Message after Changing the hal.timestamp_timer
July 2011 Altera Corporation Using Tightly Coupled Memory with the Nios II Processor Tutorial

1–18 Chapter 1: Using Tightly Coupled Memory with the Nios II Processor
Understanding the Tcl Scripts
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

July 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this tutorial.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

July 2011 2.0

■ Converted to new 8.5 x 11” template.

■ Replaced references to SOPC Builder with Qsys.

■ Minor text edits.

April 2009 1.1 Minor updates to reflect latest software updates.

July 2008 1.0 Updated to use Quartus II 8.0 and SOPC Builder 8.0. Revised design example instructions to
the command line tools instead of the Nios II IDE.

July 2005 Initial release.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.
Using Tightly Coupled Memory with the Nios II Processor Tutorial

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

h A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Using Tightly Coupled Memory with the Nios II Processor Tutorial July 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Using Tightly Coupled Memory with the Nios II Processor Tutorial
	Contents
	1. Using Tightly Coupled Memory with the Nios II Processor
	Reasons for Using Tightly Coupled Memory
	Tradeoffs
	Guidelines for Using Tightly Coupled Memory
	Hardware Guidelines
	Software Guidelines
	Locating Functions in Tightly Coupled Memory

	Tightly Coupled Memory Interface
	Restrictions
	Dual Port Memories

	Building a Nios II System with Tightly Coupled Memory
	Hardware and Software Requirements
	Modify the Example Design to Include Tightly Coupled Memories
	Create the Tightly Coupled Memories
	Connect and Position the Tightly Coupled Memories
	Add a Performance Counter

	Generate the Qsys System
	Run the Tightly Coupled Memories Examples from the Nios II Command Shell
	Program and Run the Tightly Coupled Memory Project
	Understanding the Tcl Scripts
	Timer Memory
	Exception Stack
	Timer Definitions
	peripheral_subsystem_sys_clk_timer
	peripheral_subsystem_high_res_timer

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

