
© 2011 Altera Corporation. All rights reserved. ALTERA, ARR
and/or trademarks of Altera Corporation in the U.S. and other
www.altera.com/common/legal.html. Altera warrants perform
reserves the right to make changes to any products and services
information, product, or service described herein except as exp
specifications before relying on any published information and

Nios II Software Developer’s Handbook
May 2011

NII52002-11.0.0

May 2011
NII52002-11.0.0
A. Using the Nios II Integrated
Development Environment
This chapter familiarizes you with the main features of the Nios® II integrated
development environment (IDE).

In most cases, you should create new projects using either the Nios II Software Build
Tools (SBT) for Eclipse™ or the SBT command line. IDE support is for the following
situations:

■ Working with pre-existing Nios II IDE software projects

■ Creating new projects for the Nios II C2H compiler

■ Debugging with the FS2 console

You can use the Nios II IDE only if your underlying hardware is generated with the
SOPC Builder system integration tool.

If your hardware design is created with SOPC Builder 7.0 or earlier, you must either
use the Nios II IDE development flow, or update your hardware design.

The Nios II IDE is an optional feature. It is available only if you enable Legacy
Package: Nios II IDE / GCC3 Toolchain / C2H Compiler when you install the Altera®
Complete Design Suite.

The Nios II IDE uses GCC 3, and IDE projects can only be built with GCC 3.

f For detailed information about installing the Altera Complete Design Suite, refer to
the Altera Software Installation and Licensing Manual.

This chapter contains the following sections:

■ “Differences from the Nios II Software Build Tools”

■ “Getting Started with the Nios II IDE” on page A–4

■ “Developing Software with the Nios II IDE” on page A–7

■ “Porting Nios II IDE Projects to the SBT” on page A–18

■ “Archiving Nios II IDE Software Projects” on page A–21

■ “Help System” on page A–22

f For more information on all topics related to the Nios II IDE, refer to the Nios II IDE
help system.

Differences from the Nios II Software Build Tools
The Nios II Embedded Design Suite (EDS) offers two software development tool
flows, as described in “Nios II Software Development Environment” in the Overview
chapter of the Nios II Software Developer’s Handbook. The Nios II IDE is the key part of
the Nios II IDE development flow. This section describes some importance differences
between the SBT development flow and the Nios II IDE development flow.
IA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat. & Tm. Off.
 countries. All other trademarks and service marks are the property of their respective holders as described at

ance of its semiconductor products to current specifications in accordance with Altera’s standard warranty, but
 at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
ressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device
 before placing orders for products or services.

Subscribe

https://www.altera.com/servlets/subscriptions/alert?id=NII52002
http://www.altera.com/common/legal.html
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf

A–2 Appendix A: Using the Nios II Integrated Development Environment
Differences from the Nios II Software Build Tools
Table A–1 describes the tools provided by the Nios II IDE user interface.

Nios II IDE Makefiles
A major difference between the Nios II IDE software development flow and the
Nios II SBT flow is the difference in makefile implementation. The Nios II SBT
generates user-managed makefiles that you can read, and modify in detail using the
SBT. In the Nios II IDE development flow, the IDE creates and manages your project
makefiles for you.

The key differences between user-managed makefiles and Nios II IDE makefiles are as
follows:

■ The Nios II IDE has control over the contents of a makefile in an IDE project.

■ In a Nios II IDE makefile, the structure and syntax are optimized for automation
rather than for human readability.

■ It is not normally necessary or recommended for you to read or modify a Nios II
IDE makefile.

Nios II IDE Terminology
The Nios II SBT and the Nios II IDE are described with somewhat different project
terminology. Where the meaning is unambiguous, this handbook uses the SBT
terminology for both development flows. The IDE terminology is used where needed
to distinguish the Nios II IDE development flow from the SBT development flow.

Table A–1. The Nios II IDE and Associated Tools

Tools Description

The Nios II IDE
The Nios II IDE is a software development user interface for the Nios II processor. All software
development tasks can be accomplished in the IDE, including editing, building, and debugging
programs. For more information, refer to the Nios II IDE help system.

Flash programmer

The Nios II IDE includes a flash programmer utility that allows you to program flash memory chips
on a target board. The flash programmer supports programming flash on any board, including
Altera® development boards and your own custom boards. The flash programmer facilitates
programming flash for the following purposes:

■ Executable code and data

■ Bootstrap code to copy code from flash to RAM, and then run from RAM

■ Hardware Abstraction Layer (HAL) file subsystems

■ FPGA hardware configuration data

For more information, refer to the Nios II Flash Programmer User Guide.

Instruction set
simulator

Altera provides an instruction set simulator (ISS) for the Nios II processor. The ISS is available in the
Nios II IDE, and the process for running and debugging programs on the ISS is the same as for
running and debugging on target hardware. For more information, refer to the Nios II IDE help
system.

Quartus® II
Programmer

The Quartus II programmer is part of the Altera Complete Design Suite, however the Nios II IDE can
start the Quartus II programmer directly. The Quartus II programmer allows you to download new
FPGA configuration files to the board. For more information, refer to the Nios II IDE help system, or
to the Quartus II help system.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Appendix A: Using the Nios II Integrated Development Environment A–3
Differences from the Nios II Software Build Tools
The terminology differences are listed in Table A–2.

Altera Nios II Instruction Set Simulator
The Nios II Instruction Set Simulator (ISS) allows you to begin developing programs
before the target hardware platform is ready. The Nios II IDE allows you to run
programs on the ISS as easily as running on a real hardware target.

Command-Line Tools
Although the Nios II IDE is primarily a GUI, it includes some commands for use at
the Nios II Command Shell. This section describes those commands.

Nios II IDE Command-Line Tools
Table A–3 shows the command-line utilities that form the basis of the Nios II IDE.
These tools can create and build Nios II IDE projects without launching the Nios II
IDE GUI. However, Altera recommends that you use the Nios II SBT to address
command-line needs, as well as for all new projects.

f For detailed information about the Nios II SBT, refer to the Nios II Software Build Tools
chapter of the Nios II Software Developer’s Handbook.

Each of the Nios II IDE command-line tools launches the Nios II IDE in the
background, without displaying the GUI. You cannot use these utilities while the IDE
is running, because only one instance of the Nios II IDE can be active at a time.

The Nios II IDE command-line tools are in the <Nios II EDS install path>/bin/
directory.

Table A–2. Nios II IDE Terminology

Nios II IDE Terminology Nios II SBT Terminology

Nios II C/C++ application Nios II application

Nios II C/C++ library Nios II user library

System library Board support package (BSP)

System library option BSP setting

Software component Software package

Table A–3. Nios II IDE Command-Line Tools

Tool Description

nios2-create-system-library Creates a new system library project.

nios2-create-application-project Creates a new C/C++ application project.

nios2-build-project

Builds a project using the Nios II IDE managed-make facilities.
Creates or updates the makefiles to build the project, and
optionally runs make. nios2-build-project operates only on
projects that exist in the current Nios II IDE workspace.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

A–4 Appendix A: Using the Nios II Integrated Development Environment
Getting Started with the Nios II IDE
1 The Nios II IDE command-line tools must be supplied with a workspace location.
This location is supplied by means of the -data <path to workspace> command-line
argument. The path to the workspace must not contain whitespace. Otherwise, any
valid disk location can be used for the workspace. The workspace shown in
Example A–1 is the default workspace which is used by the IDE.

FS2 Command-Line Interface
The nios2-console command opens the FS2 command-line interface, connects to the
Nios II processor, and optionally downloads code.

1 The FS2 console is not compatible with the Nios II SBT for Eclipse.

Getting Started with the Nios II IDE
This section describes the key components of the Nios II IDE, and describes how to
create and debug a software project.

The Nios II IDE Workbench
The term “workbench” refers to the desktop development environment for the Nios II
IDE. The workbench is where you edit, compile and debug your programs in the IDE.

Perspectives, Editors, and Views
Each workbench window contains one or more perspectives. Each perspective
provides a set of capabilities for accomplishing a specific type of task.

Most perspectives in the workbench comprise an editor area and one or more views.
An editor allows you to open and edit a project resource (i.e., a file, folder, or project).
Views support editors, provide alternative presentations, and ways to navigate the
information in your workbench.

nios2-import-project
Imports a previously-created Nios II IDE project into the current
workspace.

nios2-delete-project
Removes a project from the Nios II IDE workspace, and
optionally deletes files from the file system.

Table A–3. Nios II IDE Command-Line Tools

Tool Description

Example A–1. Specifying a Workspace on the Command Line

nios2-create-project \
-data c:/altera/80/nios2eds/bin/eclipse/nios2-ide-workspace-8.0 \
<other arguments>
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Appendix A: Using the Nios II Integrated Development Environment A–5
Getting Started with the Nios II IDE
Any number of editors can be open at once, but only one can be active at a time. The
main menu bar and toolbar for the workbench window contain operations that are
applicable to the active editor. Tabs in the editor area indicate the names of resources
that are currently open for editing. An asterisk (*) indicates that an editor has unsaved
changes. Views can also provide their own menus and toolbars, which, if present,
appear along the top edge of the view. To open the menu for a view, click the
drop-down arrow icon at the right of the view’s toolbar or right-click in the view. A
view might appear on its own, or stacked with other views in a tabbed notebook.

EDS Development Flows and the Nios II IDE
The main distinction between the two development flows is in the management of the
project.

Nios II IDE Projects and Makefiles
In the Nios II IDE development flow, the IDE manages Nios II C/C++ application and
board support package (BSP) projects and makefiles that you create with the New
Project wizard in Nios II IDE. The best way to modify and build an IDE project is
through the IDE. You manage the BSP project settings with the System Library page
of the Properties dialog box.

1 In the Nios II IDE, the term “system library” is used for a BSP project.

SBT Projects and Makefiles
In the Nios II SBT development flow, you manage Nios II application, user library,
and BSP projects and makefiles, giving you total control. Typically, you create SBT
projects outside of the Nios II IDE and then import them into the IDE for debugging.

1 SBT projects and Nios II IDE projects are not interchangeable. However, you can
manually convert an IDE project to an SBT project.

f For details, refer to “Porting Nios II IDE Projects to the SBT” on page A–18.

Creating a New Nios II IDE-Managed Project
The Nios II IDE provides a New Project wizard that guides you through the steps to
create new IDE projects. To start the New Project wizard for Nios II C/C++
application projects, on the File menu in the Nios II C/C++ perspective, point to New,
and then click Nios II C/C++ Application.

The Nios II C/C++ application New Project wizard prompts you to specify:

1. A name for your new Nios II project.

2. The target hardware.

3. A template for the new project.

Project templates are ready-made, working software projects that serve as examples to
show you how to structure your own Nios II projects. It is often easier to start with a
working “Hello World” project, than to start a blank project from scratch.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

A–6 Appendix A: Using the Nios II Integrated Development Environment
Getting Started with the Nios II IDE
When the Nios II IDE creates the new application project, it also creates a BSP project.
If the name of the application project is <name>, the default name of the BSP project is
<name>*_syslib (for example, dhrystone_0_syslib). These projects appear in the
Nios II C/C++ Projects view of the workbench.

1 The first time you create or build a Nios II project, the Nios II IDE automatically
creates a project in your workspace called altera.components. This project contains
links to the source code files for all Altera-provided device drivers and software
packages, enabling you to step through system code in the debugger, set breakpoints,
and use other debugger features. The altera.components project appears in the
Nios II C/C++ Projects view. The Nios II C/C++ view protects the source files in
altera.components from accidental deletion, because they are shared among all
software projects. Do not attempt to circumvent this protection.

Building and Managing Projects
Right-clicking on any resource (a file, folder, or project) opens a context-sensitive
menu containing commands that you can perform on the resource. Right-clicking is
usually the quickest way to find the command you need, though commands are also
available in menus and toolbars.

To compile a Nios II project, right-click the project in the Nios II C/C++ Projects view,
and click Build Project. When building, the Nios II IDE first builds the BSP project
(and any other project dependencies), and then compiles the main project. Any
warnings or errors are displayed in the Tasks view.

Right-clicking a project in the Nios II C/C++ Projects view also allows you to access
the following important options for managing the project:

■ Properties—Manage the dependencies on target hardware and other projects

■ System Library Properties—Manage hardware-specific settings, such as
communication devices and memory partitioning

■ Build Project—i.e., make

■ Run As—Run the program on hardware or under simulation

■ Debug As—Debug the program on hardware or under simulation

Debug and Release Configurations
You can select a Debug or Release configuration in the Project Properties dialog box,
under C/C++ Build. The project configuration controls the optimization level and
debug compiler options.

Running and Debugging Programs
Run and debug operations are available by right-clicking the Nios II project. The
Nios II IDE allows you to run or debug the project either on a target board, under the
Nios II ISS, or using the ModelSim® logic simulator. For example, to run the program
on a target board, right-click the project in the Nios II C/C++ Projects view, point to
Run As, and then click Nios II Hardware. Character I/O to stdout and stderr are
displayed in the Console view.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Appendix A: Using the Nios II Integrated Development Environment A–7
Developing Software with the Nios II IDE
Starting a debug session is similar to starting a run session. For example, to debug the
program on the ISS, right-click the project in the Nios II C/C++ Projects view, point to
Debug As, and then click Nios II Instruction Set Simulator.

Launching the debugger changes the workbench perspective to the debug
perspective. You can easily switch between the debug perspective and the Nios II
C/C++ development perspective by clicking on the Open Perspective icon at the
upper right corner of the workbench window.

After you start a debug session, the debugger loads the program, sets a breakpoint at
main(), and begins executing the program. You use the usual controls to step through
the code: Step Into, Step Over, Resume, Terminate, etc. To set a breakpoint, double
click in the left-hand margin of the code view, or right-click in the margin and then
click Add Breakpoint.

The Nios II IDE offers many views that allow you to examine the status of the
processor while debugging, such as the Variables, Expressions, Registers, and
Memory views.

Programming Flash
Many Nios II processor systems use external flash memory to store one or more of the
following items:

■ Program code

■ Program data

■ FPGA configuration data

■ File systems

The Nios II IDE provides a Flash Programmer utility to help you manage and
program the contents of flash memory.

1 To program an SBT C/C++ application to flash memory, you must first specify an
SOPC Builder System File, as follows:

1. Click Browse at the right of the SOPC Builder System PTF File box.

2. Locate the SOPC Builder System File on which the application’s BSP is based. For
example, if you are using a Nios II SBT example, the SOPC Builder System File is
three levels up in the directory tree from the software project.

Developing Software with the Nios II IDE
In many ways, Nios II software development with the Nios II IDE is the same as
development with the SBT. The processor architecture, Hardware Abstraction Layer
(HAL), software packages and drivers are the same. However, there are a few
limitations and differences in tool flow details. This section discusses those differences
and limitations.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

A–8 Appendix A: Using the Nios II Integrated Development Environment
Developing Software with the Nios II IDE
Using the HAL in an IDE Project
Like the Nios II SBT development flow, the Nios II IDE flow can automatically keep
your system library up to date with the SOPC Builder system. In an IDE project, the
Nios II IDE manages the system library and updates the driver configurations to
accurately reflect the system hardware. If the SOPC Builder system changes — i.e., the
SOPC Builder system file (.ptf) is updated — the IDE rebuilds the system library the
next time you build or run your C/C++ application program.

Generated Files
The Nios II IDE development flow uses different file name and directory structure
conventions for some generated system library files, as described in this section.

generated.x

In a Nios II IDE project, the generated.x file is the same as the linker.x file created by
the Nios II build tools.

generated.gdb

In a Nios II IDE project, the generated.gdb file is the same as the memory.gdb file
created by the Nios II build tools.

alt_main.c

In a Nios II IDE project, you can find alt_main.c in
<Nios II EDS install path>/components/altera_hal/HAL/src.

System Library Settings
In a Nios II IDE project, you manage the system library project settings with the
System Library page of the Properties dialog box.

f For details of how to control system library settings, refer to the Nios II IDE help
system.

Reducing Code Footprint
The basic techniques for reducing code footprint are the same in the Nios II IDE flow
as in the SBT flow, but you use a different procedure to specify the system library
options. You control the following system library options through the Nios II IDE
system properties dialog box:

Table A–4. System Library Options for Reducing Code Footprint

Technique System Library Option Name

Use Reduced Device Drivers Reduced device drivers

Reduce the File Descriptor Pool Max file descriptors

Use a Smaller File I/O Library Small C library

Use the Lightweight Device Driver application
programming interface (API) Lightweight device driver API

Eliminate Clean Exit Clean exit (flush buffers)
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Appendix A: Using the Nios II Integrated Development Environment A–9
Developing Software with the Nios II IDE
Paths to Hardware Abstraction Layer Files
In Nios II IDE projects, HAL source files are in several directories. You can find
HAL-related files in the following locations:

■ The <Nios II EDS install path>/components directory contains most HAL source
files.

■ <Nios II EDS install path>/components/altera_hal/HAL/inc/sys contains header
files defining the HAL generic device models. In a #include directive, reference
these files relative to <Nios II EDS install path>/components/altera_hal/HAL/inc/.
For example, to include the direct memory access (DMA) drivers, use #include
sys/alt_dma.h

■ <Nios II EDS install path>/bin contains the newlib ANSI C library header files.

■ The Altera Complete Design Suite includes HAL drivers for SOPC Builder
components distributed with the Altera Complete Design Suite. For example, if
the design suite is installed in c:\altera\80, you can find the drivers under
c:\altera\80\ip\sopc_builder_ip.

Overriding HAL Functions

In the Nios II IDE build flow, you can override any HAL source file, including
alt_sys_init.c, by placing your own implementation in your system project directory.
When building the executable, the Nios II IDE finds your function, and uses it in place
of the HAL version.

Device Drivers for Nios II IDE Projects
HAL device drivers work the same in the Nios II IDE flow as in the SBT flow.
However, there are slight differences in how you create a device driver.

Compared with the Nios II IDE, Nios II SBT provides a less rigid set of file naming
and location requirements for your drivers. However, Altera recommends using the
Nios II IDE conventions to maintain build-flow compatibility. Provided you use the
file hierarchy described in “Integrating a Device Driver in the HAL” in the Developing
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II Software
Developer’s Handbook, your device driver is compatible with the Nios II IDE
development flow.

This section describes how to develop device drivers for Nios II IDE projects.

Eliminate All Exit Code Program never exits

Turn off C++ Support Support C++

Table A–4. System Library Options for Reducing Code Footprint

Technique System Library Option Name
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

A–10 Appendix A: Using the Nios II Integrated Development Environment
Developing Software with the Nios II IDE
Integrating a Device Driver in the HAL
This section discusses how to take advantage of the HAL’s ability to instantiate and
register device drivers during system initialization. You can take advantage of this
service, whether you created a device driver for one of the HAL generic device
models, or you created a peripheral-specific device driver. Taking advantage of the
automation provided by the HAL is mainly a process of placing files in the
appropriate place in the HAL directory structure.

Device Driver Files for the HAL

This section describes how to provide appropriate files to integrate your device driver
into the HAL.

■ A Device’s HAL Header File and alt_sys_init.c—At the heart of the HAL is the
autogenerated source file, alt_sys_init.c. alt_sys_init.c contains the source code
that the HAL uses to initialize the device drivers for all supported devices in the
system. In particular, this file defines the alt_sys_init() function, which is called
before main() to initialize all devices and make them available to the program.

f Refer to “Creating a Custom Device Driver for the HAL” in the Developing
Device Drivers for the Hardware Abstraction Layer chapter of the Nios II
Software Developer’s Handbook for more information about alt_sys_init.c.

■ A Device’s HAL Header File and alt_sys_init.c—In the Nios II IDE development
flow, for each device visible to the processor, the generator utility searches for an
associated header file in the device’s HAL/inc directory. The name of the header
file depends on the SOPC Builder component name. For example, for Altera’s
JTAG UART component, the generator finds the file
altera_avalon_jtag_uart/HAL/inc/altera_avalon_jtag_uart.h. If the generator
utility finds such a header file, it inserts code into alt_sys_init.c to perform the
following actions:

■ Include the device’s header file.

■ Call the macro <name of device>_INSTANCE to allocate storage for the device.

■ Call the macro <name of device>_INIT inside the alt_sys_init() function to
initialize the device.

■ Device Driver Source Code—Place any required source code in the HAL/src
directory. In addition, you must include a makefile fragment, component.mk. The
component.mk file lists the source files to include in the system library. You can
list multiple files by separating filenames with a space. Example A–2 shows an
example makefile fragment for Altera’s JTAG UART device.

The Nios II IDE includes the component.mk file into the top-level makefile when
compiling system library projects and application projects. component.mk can
only modify the make variables listed in Table A–5.

component.mk can add additional make rules and macros as required, but
interoperability macro names must conform to the namespace rules.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Appendix A: Using the Nios II Integrated Development Environment A–11
Developing Software with the Nios II IDE
f For details about namespace rules, refer to “HAL Namespace Allocation” in
the Developing Device Drivers for the Hardware Abstraction Layer chapter of
the Nios II Software Developer’s Handbook.

Overriding the Default Device Drivers
The Nios II IDE locates all include and source files using search paths. The system
library project directory is always searched first. If you place an alternative driver in
the system library project directory, it overrides drivers installed with the Nios II EDS.
For example, if a component provides the header file alt_my_component.h, and the
system library project directory also contains a file alt_my_component.h, the version
provided in the system library project directory is used at compile time. This same
mechanism can override C and assembler source files.

Exception Handling in a Nios II IDE Project
Exception handling with the internal interrupt controller in Nios II IDE projects is
largely the same as in SBT projects. This section discusses the differences.

1 The Nios II IDE development flow does not support external interrupt controllers.

Software Trap Handling
If your software is compiled for release, the exception handler makes a distinction
between traps and other exceptions. If your software is compiled for debug, traps and
other exceptions are handled identically, by executing a break instruction.

f For more information about HAL software exception handling, refer to “HAL
Exception Handling System Implementation” in the Exception Handling chapter of the
Nios II Software Developer’s Handbook.

1 The instruction-related exception handler is unavailable in Nios II IDE projects.

Example A–2. component.mk for a UART Driver

C_LIB_SRCS += altera_avalon_uart.c
ASM_LIB_SRCS +=
INCLUDE_PATH +=

Table A–5. Make Variables Defined in component.mk

Make Variable Meaning

C_LIB_SRCS The list of C source files to build into the system library.

ASM_LIB_SRCS
The list of assembler source files to build into the system library (these are
preprocessed with the C preprocessor).

INCLUDE_PATH
A list of directories to add to the include search path. The directory
<component>/HAL/inc is added automatically and so does not need to be
explicitly defined by the component.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf

A–12 Appendix A: Using the Nios II Integrated Development Environment
Developing Software with the Nios II IDE
Advanced Exceptions
Advanced exception support, including the instruction-related exception handler, is
not available in the Nios II IDE development flow.

Using the Unimplemented Instruction Handler
To include the unimplemented instruction handler in a Nios II IDE project, turn on
Emulate multiply and divide instructions on the System properties page of the
Nios II IDE.

1 You do not normally need the unimplemented instruction handler, because the HAL
includes software emulation for unimplemented instructions from its run-time
libraries if you are compiling for a Nios II processor that does not support the
instructions.

f For further information about the unimplemented instruction handler, refer to “HAL
Exception Handling System Implementation” in the Exception Handling chapter of the
Nios II Software Developer’s Handbook.

Configuring MicroC/OS-II Projects with the Nios II IDE
In the Nios II IDE, the displayed MicroC/OS-II setting names are different from the
equivalent BSP setting names. This section lists the meanings of the IDE setting
names.

For step-by-step instructions on how to create a MicroC/OS-II project in the Nios II
IDE, refer to Using the MicroC/OS-II RTOS with the Nios II Processor Tutorial.

MicroC/OS-II General Options
Table A–6 shows the general MicroC/OS-II options available through the Nios II IDE.

Table A–6. General Options (Part 1 of 2)

Option Description

Maximum number of tasks Specifies the value of the OS_MAX_TASKS preprocessor symbol.
Must be at least 2

Lowest assignable priority Specifies the value of the OS_LOWEST_PRIO preprocessor
symbol. Maximum allowable value is 63.

Thread safe C library Enable thread-safe C library

Enable code for event flags
Specifies the value of the OS_FLAG_EN preprocessor symbol.
When this option is disabled (set to 0), event flag settings are
also disabled. Refer to “Event Flag Settings” on page A–13.

Enable code for mutex
semaphores

Specifies the value of the OS_MUTEX_EN preprocessor symbol.
When this option is disabled (set to 0), mutual exclusion
semaphore settings are also disabled. Refer to “Mutex Settings”
on page A–13

Enable code for semaphores
Specifies the value of the OS_SEM_EN preprocessor symbol.
When this option is disabled (set to 0), semaphore settings are
also disabled. Refer to “Semaphore Settings” on page A–14.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf

Appendix A: Using the Nios II Integrated Development Environment A–13
Developing Software with the Nios II IDE
Event Flag Settings
Table A–7 shows the event flag settings available through the Nios II IDE.

Mutex Settings
Table A–8 shows the mutex settings available through the Nios II IDE.

Enable code for mailboxes
Specifies the value of the OS_MBOX_EN preprocessor symbol.
When this option is disabled (set to 0), mailbox settings are also
disabled. Refer to “Mailbox Settings” on page A–14.

Enable code for queues
Specifies the value of the OS_Q_EN preprocessor symbol. When
this option is disabled (set to 0), queue settings are also
disabled. Refer to “Queue Settings” on page A–14.

Enable code for memory
management

Specifies the value of the OS_MEM_EN preprocessor symbol.
When this option is disabled (set to 0), memory management
settings are also disabled. Refer to “Memory Management
Settings” on page A–15.

Enable code for timers Enable code for timers

Table A–7. Event Flags Settings

Setting Description

Include code for wait on clear in
the event flags

Specifies the value of the OS_FLAG_WAIT_CLR_EN preprocessor
symbol. This setting Includes code to wait for the specified bits
to be cleared in the event flag group.

Include code for
OSFlagAccept()

Specifies the value of the OS_FLAG_ACCEPT_EN preprocessor
symbol.

Include code for OSFlagDel() Specifies the value of the OS_FLAG_DEL_EN preprocessor
symbol.

Include code for OSFlagQuery() Specifies the value of the OS_FLAG_QUERY_EN preprocessor
symbol.

Maximum number of event flag
groups Specifies the value of the OS_MAX_FLAGS preprocessor symbol.

Size of name of event flags
group

Specifies the value of the OS_FLAG_NAME_SIZE preprocessor
symbol.

Event flag bits (8, 16, 32) Specifies the number of event flag bits

Table A–8. Mutex Settings

Setting Description

Include code for
OSMutexAccept()

Specifies the value of the OS_MUTEX_ACCEPT_EN preprocessor
symbol.

Include code for OSMutexDel() Specifies the value of the OS_MUTEX_DEL_EN preprocessor
symbol.

Include code for
OSMutexQuery()

Specifies the value of the OS_MUTEX_QUERY_EN preprocessor
symbol.

Table A–6. General Options (Part 2 of 2)

Option Description
May 2011 Altera Corporation Nios II Software Developer’s Handbook

A–14 Appendix A: Using the Nios II Integrated Development Environment
Developing Software with the Nios II IDE
Semaphore Settings
Table A–9 shows the semaphore settings available through the Nios II IDE.

Mailbox Settings
Table A–10 shows the mailbox settings available through the Nios II IDE.

Queue Settings
Table A–11 shows the queue settings available through the Nios II IDE.

Table A–9. Semaphores Settings

Setting Description

Include code for
OSSemAccept()

Specifies the value of the OS_SEM_ACCEPT_EN preprocessor
symbol.

Include code for OSSemSet() Specifies the value of the OS_SEM_SET_EN preprocessor
symbol.

Include code for OSSemDel() Specifies the value of the OS_SEM_DEL_EN preprocessor
symbol.

Include code for OSSemQuery() Specifies the value of the OS_SEM_QUERY_EN preprocessor
symbol.

Table A–10. Mailboxes Settings

Setting Description

Include code for
OSMboxAccept()

Specifies the value of the OS_MBOX_ACCEPT_EN preprocessor
symbol.

Include code for OSMBoxDel() Specifies the value of the OS_MBOX_DEL_EN preprocessor
symbol.

Include code for OSMboxPost() Specifies the value of the OS_MBOX_POST_EN preprocessor
symbol.

Include code for
OSMboxPostOpt()

Specifies the value of the OS_MBOX_POST_OPT_EN preprocessor
symbol.

Include code for
OSMBoxQuery()

Specifies the value of the OS_MBOX_QUERY_EN preprocessor
symbol.

Table A–11. Queues Settings (Part 1 of 2)

Setting Description

Include code for OSQAccept() Specifies the value of the OS_Q_ACCEPT_EN preprocessor
symbol.

Include code for OSQDel() Specifies the value of the OS_Q_DEL_EN preprocessor symbol.

Include code for OSQFlush() Specifies the value of the OS_Q_FLUSH_EN preprocessor
symbol.

Include code for OSQPost() Specifies the value of the OS_Q_POST_EN preprocessor symbol.

Include code for
OSQPostFront()

Specifies the value of the OS_Q_POST_FRONT_EN preprocessor
symbol.

Include code for OSQPostOpt() Specifies the value of the OS_Q_POST_OPT_EN preprocessor
symbol.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Appendix A: Using the Nios II Integrated Development Environment A–15
Developing Software with the Nios II IDE
Memory Management Settings
Table A–12 shows the memory management settings available through the Nios II
IDE.

Miscellaneous Settings
Table A–13 shows the miscellaneous settings available through the Nios II IDE.

Include code for OSQQuery() Specifies the value of the OS_Q_QUERY_EN preprocessor
symbol.

Maximum number of Queue
Control blocks Specifies the value of the OS_MAX_QS preprocessor symbol.

Table A–12. Memory Management Settings

Setting Description

Include code for OSMemQuery() Specifies the value of the OS_MEM_QUERY_EN preprocessor
symbol.

Maximum number of memory
partitions

Specifies the value of the OS_MAX_MEM_PART preprocessor
symbol.

Size of memory partition name Specifies the value of the OS_MEM_NAME_SIZE preprocessor
symbol.

Table A–13. Miscellaneous Settings

Setting Description

Enable argument checking Specifies the value of the OS_ARG_CHK_EN preprocessor
symbol.

Enable uCOS-II hooks Specifies the value of the OS_CPU_HOOKS_EN preprocessor
symbol.

Enable debug variables Specifies the value of the OS_DEBUG_EN preprocessor symbol.

Include code for OSSchedLock()
and OSSchedUnlock()

Specifies the value of the OS_SCHED_LOCK_EN preprocessor
symbol.

Enable tick stepping feature for
uCOS-View

Specifies the value of the OS_TICK_STEP_EN preprocessor
symbol.

Enable statistics task Specifies the value of the OS_TASK_STAT_EN preprocessor
symbol.

Check task stacks from
statistics task

Specifies the value of the OS_TASK_STAT_STK_CHK_EN
preprocessor symbol.

Statistics task stack size Specifies the value of the OS_TASK_STAT_STK_SIZE
preprocessor symbol.

Idle task stack size Specifies the value of the OS_TASK_IDLE_STK_SIZE
preprocessor symbol.

Maximum number of event
control blocks

Specifies the value of the OS_MAX_EVENTS preprocessor
symbol.

Size of semaphore, mutex,
mailbox, or queue name

Specifies the value of the OS_EVENT_NAME_SIZE preprocessor
symbol.

Table A–11. Queues Settings (Part 2 of 2)

Setting Description
May 2011 Altera Corporation Nios II Software Developer’s Handbook

A–16 Appendix A: Using the Nios II Integrated Development Environment
Developing Software with the Nios II IDE
Task Management Settings
Table A–14 shows the task management settings available through the Nios II IDE.

Time Management Settings
Table A–15 shows the time management settings available through the Nios II IDE.

Table A–14. Task Management Settings

Setting Description

Include code for
OSTaskChangePrio()

Specifies the value of the OS_TASK_CHANGE_PRIO_EN
preprocessor symbol.

Include code for
OSTaskCreate()

Specifies the value of the OS_TASK_CREATE_EN preprocessor
symbol.

Include code for
OSTaskCreateExt()

Specifies the value of the OS_TASK_CREATE_EXT_EN
preprocessor symbol.

Include code for OSTaskDel() Specifies the value of the OS_TASK_DEL_EN preprocessor
symbol.

Include variables in OS_TCB for
profiling

Specifies the value of the OS_TASK_PROFILE_EN preprocessor
symbol.

Include code for OSTaskQuery() Specifies the value of the OS_TASK_QUERY_EN preprocessor
symbol.

Include code for
OSTaskSuspend() and
OSTaskResume()

Specifies the value of the OS_TASK_SUSPEND_EN preprocessor
symbol.

Include code for
OSTaskSwHook()

Specifies the value of the OS_TASK_SW_HOOK_EN preprocessor
symbol.

Size of task name Specifies the value of the OS_TASK_NAME_SIZE preprocessor
symbol.

Table A–15. Time Management Settings

Setting Description

Include code for
OSTimeDlyHMSM()

Specifies the value of the OS_TIME_DLY_HMSM_EN preprocessor
symbol.

Include code
OSTimeDlyResume()

Specifies the value of the OS_TIME_DLY_RESUME_EN
preprocessor symbol.

Include code for OSTimeGet()
and OSTimeSet()

Specifies the value of the OS_TIME_GET_SET_EN preprocessor
symbol.

Include code for
OSTimeTickHook()

Specifies the value of the OS_TIME_TICK_HOOK_EN
preprocessor symbol.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Appendix A: Using the Nios II Integrated Development Environment A–17
Developing Software with the Nios II IDE
Timer Management Settings
Table A–16 shows the timer management settings available through the Nios II IDE.

Using NicheStack in a Nios II IDE Project
This section discusses the details of how to use the NicheStack TCP/IP Stack in the
Nios II IDE.

get_mac_addr() and get_ip_addr()
The NicheStack TCP/IP Stack system code calls get_mac_addr() and get_ip_addr()
during the device initialization process. These functions are necessary for the system
code to set the media access control (MAC) and IP addresses for the network
interface, which you select through MAC interface in the NicheStack TCP/IP Stack
tab of the Software Components dialog box.

INICHE_DEFAULT_IF, defined in system.h, identifies the network interface that you
defined in SOPC Builder. In the Nios II IDE, you can set INICHE_DEFAULT_IF through
the MAC interface control in the NicheStack TCP/IP Stack tab of the Software
Components dialog box.

DHCP_CLIENT, also defined in system.h, specifies whether to use the dynamic host
configuration protocol (DHCP) client application to obtain an IP address. You can set
or clear this setting in the Nios II IDE (with the Use DHCP to automatically assign IP
address check box)

Configuring the NicheStack TCP/IP Stack in the Nios II IDE
The Nios II IDE allows you to configure certain options (i.e. modify the #defines in
system.h) without editing source code. The most commonly accessed options are
available through the NicheStack TCP/IP Stack tab of the Software Components
dialog box.

1 If you modify the ipport.h file directly, be careful not to select the Clean Project build
option in the Nios II IDE. Selecting Clean Project results in your modified ipport.h
file being replaced with the starting template version of this file.

Table A–16. Timer Management Settings

Setting Description

Maximum number of timers Specifies the maximum number of timers

Determine the size of a timer
name Specifies the size of a timer name

Size of timer wheel (#Spokes) Specifies the size of the timer wheel

Rate at which timer
management task runs (Hz) Specifies the rate at which the timer management task runs

Stack size for timer task Specifies the stack space allocated for the timer task

Priority of timer task
(0=highest) Specifies the timer task priority
May 2011 Altera Corporation Nios II Software Developer’s Handbook

A–18 Appendix A: Using the Nios II Integrated Development Environment
Porting Nios II IDE Projects to the SBT
Porting Nios II IDE Projects to the SBT
The Nios II SBT uses a different directory structure and settings file format than the
Nios II IDE. Therefore, if you wish to take advantage of the Nios II SBT, you need to
port your IDE projects to the Nios II SBT development flow.

This appendix describes the steps required to port a Nios II IDE project to the
Nios II SBT development flow. The Nios II EDS includes a utility to convert Nios II
IDE projects to the SBT flow.

1 You do not need to rewrite your Nios II IDE project’s C/C++ code for use with the
SBT development flow.

The Nios II SBT development flow provides a number of advantages over the Nios II
IDE development flow. You might want to port an IDE project to the SBT to take
advantage of the following improvements:

■ Fully repeatable control over all build options using command line options, Tcl
scripts, or both

■ Simplified project file management and naming

■ Simplified makefiles

■ Versioned device drivers

■ Independence from Eclipse code and Eclipse projects

■ Self-contained BSPs, making hand-off and version control easier than is possible
with Nios II IDE-created BSPs (system library projects)

■ Upwards compatibility with future releases of the Nios II EDS

■ GCC toolchain upgraded to version 4.1.2

Converting a Nios II IDE Project
This section describes how to convert a Nios II IDE project to an SBT project using the
nios2-convert-ide2sbt utility.

1. Build the original project in the Nios II IDE, using either the Debug or the Release
configuration, depending on your preference. Ensure that the project builds
without errors.

1 The Nios II SBT flow does not include separate Debug and Release builds
as implemented in the Nios II IDE development flow.

2. Launch the Nios II Command Shell.

f For details about the Nios II Command Shell, refer to the Getting Started
from the Command Line chapter of the Nios II Software Developer’s Handbook.

3. Run nios2-convert-ide2sbt. The command syntax is as follows:

nios2-convert-ide2sbt --input-dir=<source directory> \
--output-dir=<target directory> \
--build-config=<configuration>
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

Appendix A: Using the Nios II Integrated Development Environment A–19
Porting Nios II IDE Projects to the SBT
The command arguments are as follows:

■ <source directory>—directory containing the original Nios II IDE project.

■ <target directory>—directory where nios2-convert-ide2sbt places the
converted SBT project. If <target directory> does not exist, nios2-convert-ide2sbt
creates it.

■ <configuration>—Debug or Release, designating the Nios II IDE project
configuration.

Nios II IDE project types are converted as shown in Table A–17.

For example, suppose you have a Nios II C/C++ application in the Release
configuration, located in the ./software/hello_world directory. To convert the project
and its associated system library, and put the resulting SBT project in
the ./software_sbt directory, type:

nios2-convert-ide2sbt --input-dir=software/hello_world \
--output-dir=software_sbt --build-config=Release r

1 If you need to reconvert a project you previously converted, you must delete the
previous target directory, or specify a new target directory.

nios2-convert-ide2sbt converts your Nios II IDE software project to equivalent SBT
projects. nios2-convert-ide2sbt ports compiler flags, like the optimization level,
debug, and custom instruction options, to the new project. During conversion,
nios2-convert-ide2sbt displays the converted project settings on the console, in the
form of a sample SBT command line.

f For details about SBT command usage, refer to the Nios II Software Build Tools and
Nios II Software Build Tools Reference chapters of the Nios II Software Developer’s
Handbook.

Other Software Modules
This section describes how to convert and incorporate the following kinds of software
modules that you might need to include in your converted BSP:

■ Custom device drivers and software components

■ Precompiled libraries and non-HAL device drivers

Table A–17. Conversion of Project Types by nios2-convert-ide2sbt

Nios II IDE Project Type SBT Conversion

Nios II C/C++ system library BSP

Nios II C/C++ library User library (1)

Nios II C/C++ application Application project (1)

Note to Table A–17:

(1) At the same time, nios2-convert-ide2sbt converts any Nios II C/C++ system library or Nios II C/C++ libraries on
which the converted project depends.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

A–20 Appendix A: Using the Nios II Integrated Development Environment
Porting Nios II IDE Projects to the SBT
Custom Device Drivers and Software Components
In the Nios II IDE development flow, a makefile fragment named component.mk
specifies device drivers. By contrast, in the Nios II SBT development flow, a Tcl script
defines the device driver structure. If you have custom device drivers and software
components, including third-party device drivers, convert them to Tcl scripts
manually.

f For more information about implementing device drivers and software packages for
the Nios II SBT, refer to “Device Drivers and Software Packages” in the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.

Precompiled Libraries and Non-HAL Device Drivers
If you have precompiled libraries and non-HAL device drivers, including third-party
libraries and device drivers, convert them manually.

The best way to convert a typical precompiled library is to create a software package.
If the precompiled library is dependent on a specific hardware device, it is better to
incorporate the library into the device driver. Library archive files (.a) can be
incorporated into a device driver just as C source files (.c) and header files (.h) are.

1 Non-HAL device drivers do not support initialization through alt_sys_init().

f For information about creating software packages and drivers, refer to “Integrating a
Device Driver in the HAL” in the Developing Device Drivers for the Hardware Abstraction
Layer chapter of the Nios II Software Developer’s Handbook.

nios2-convert-ide2sbt does not convert GNU Compiler Collection (GCC)
command-line options for external include file paths (-I) or external library file paths
(-L, -l). You must handle these cases manually.

To add include paths to a BSP, use the hal.make.bsp_inc_dirs BSP setting in your Tcl
script.

To add libraries to an application, add or modify one of the following variables in the
application makefile:

■ APP_LIBRARY_DIRS—Specifies a list of paths to directories in which lib<libname>.a
files reside.

■ APP_LIBRARY_NAMES—Specifies a list of the names of the libraries being added. If
the library file is named lib<libname>.a, specify <libname> as the name of the
library.

Using Your Converted Project
When you have finished porting your project, you can manage the makefiles, build
and run the project, and perform all other project tasks exactly as if the project were
created with the SBT. You can also import the project to the SBT for Eclipse for
debugging.

The Nios II EDS includes two versions of the GCC toolchain: GCC 3.4.6 and
GCC 4.1.2. GCC 4, introduced with the Nios II EDS version 10.0, is fully
backwards-compatible with GCC 3, and provides substantially faster build times.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

Appendix A: Using the Nios II Integrated Development Environment A–21
Archiving Nios II IDE Software Projects
After conversion, your project is configured to use GCC 3 by default. To upgrade to
GCC 4, import the project to the Nios II SBT for Eclipse and change the toolchain in
the Properties dialog box, or simply build the project in the GCC 4 Nios II Command
Shell.

f For information about managing GCC toolchains in the SBT for Eclipse, refer to
“Managing Toolchains in Eclipse” in the Getting Started with the Graphical User Interface
chapter of the Nios II Software Developer’s Handbook. For information about selecting
the toolchain on the command line, refer to the Getting Started from the Command Line
chapter of the Nios II Software Developer’s Handbook.

1 Nios II IDE projects cannot be directly imported to the SBT for Eclipse. You must first
convert the project to the SBT, according to the procedures in this section.

Archiving Nios II IDE Software Projects
This section helps you identify the files you must include when archiving a Nios II
IDE software project. With this information, you can archive a Nios II application
project and its associated Nios II BSP project.

You might want to archive your projects for one of the following reasons:

■ To place them under source control

■ To create backups

■ To bundle the projects for transfer to another location

This section covers the following information:

■ How to find and identify the files that you must include in an archived Nios II IDE
software project.

■ Which files must have write permission to allow the software projects to be built.

Required Files
This section describes the files required by Nios II IDE software projects. This is the
minimum set of files needed to completely rebuild a software project, including the
Executable and Linking Format File (.elf).

Archive your Nios II IDE software projects together with the SOPC Builder system on
which they are based. You cannot rebuild a Nios II IDE software project without its
associated SOPC Builder system.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52014.pdf

A–22 Appendix A: Using the Nios II Integrated Development Environment
Help System
Nios II Application Project Files
The files listed in Table A–18 are located in the Nios II application project directory.

Nios II BSP Project
The files listed in Table A–19 are located in the Nios II BSP (system library) project
directory.

File Write Permissions
You must have write permission for certain files, shown in Table A–18 and
Table A–19. The tools write to these files as part of the build process. If the files are not
writable, the tool chain fails.

Many source control tools mark local files read-only by default. In this case, you must
override this behavior. You do not have to check the files out of source control unless
you are modifying the Nios II software project.

Help System
The Nios II IDE help system provides documentation on all IDE topics. To launch the
help system, click Help Contents on the Help menu. You can also press F1 on
Windows (Shift-F1 on Linux) at any time for context-sensitive help. The Nios II IDE
help system contains hands-on tutorials that guide you step-by-step through the
process of creating, building, and debugging Nios II projects.

Table A–18. Files Required for a Nios II Application Project

File Description File Name
Write

Permission
Required? (1)

All source files for example: app.c, header.h,
assembly.s, lookuptable.dat No

Eclipse project file .project No

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

Software configuration file application.stf No

Note to Table A–18:

(1) For further information about write permissions, refer to “File Write Permissions”.

Table A–19. Files Required for a Nios II BSP Project

File description File name
Write

permission
required? (1)

Eclipse project file .project Yes

C/C++ Development Toolkit project file .cdtproject Yes

C/C++ Development Toolkit option file .cdtbuild No

System software configuration file system.stf Yes

Note to Table A–19:

(1) For further information about write permissions, see “File Write Permissions”.
Nios II Software Developer’s Handbook May 2011 Altera Corporation

Appendix A: Using the Nios II Integrated Development Environment A–23
Document Revision History
Document Revision History
Table A–20 shows the revision history for this document.

Table A–20. Document Revision History

Date Version Changes

May 2011 11.0.0 The GCC 3 toolchain is an optional feature.

February 2011 10.1.0 Removed “Referenced Documents” section.

July 2010 10.0.0

■ Introduction of GCC 4 toolchain for Nios II Software Build Tools.

■ Nios II IDE projects limited to GCC 3.

■ Upgrading converted projects to GCC 4.

November 2009 9.1.0

■ Nios II Software Build Tools for Eclipse introduced.

■ Nios II Integrated Development Environment chapter combined with Appendix A, Porting
Nios II IDE Projects to the Software Build Tools. Chapter replaced by Getting Started with
the Graphical User Interface chapter).

■ Include Nios II IDE-specific content from the following chapters:

■ Overview

■ Developing Programs Using the Hardware Abstraction Layer

■ Developing Device Drivers for the Hardware Abstraction Layer

■ Exception Handling

■ MicroC/OS-II Real-Time Operating System

■ Ethernet and the NicheStack TCP/IP Stack - Nios II Edition

March 2009 9.0.0
■ Reorganized and updated information and terminology to clarify role of Nios II Software

Build Tools.

■ Corrected minor typographical errors.

May 2008 8.0.0 Maintenance release.

October 2007 7.2.0 altera.components project added.

May 2007 7.1.0

■ Nios II Software Build Tools introduced.

■ Added instructions for importing Software Build Tools projects.

■ Changed chapter title.

■ Added table of contents to “Introduction” section.

■ Added Referenced Documents section.

March 2007 7.0.0 Maintenance release.

November 2006 6.1.0 Updated look and feel based on Eclipse 3.2, including Nios II C/C++ perspective and Nios II
C/C++ Projects views, renamed project types.

May 2006 6.0.0 Maintenance release.

October 2005 5.1.0 Updated for the Nios II IDE version 5.1.

May 2005 5.0.0 Maintenance release.

September 2004 1.1 Updated screen shots.

May 2004 1.0 Initial release.
May 2011 Altera Corporation Nios II Software Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52017.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52008.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

A–24 Appendix A: Using the Nios II Integrated Development Environment
Document Revision History
Nios II Software Developer’s Handbook May 2011 Altera Corporation

	A. Using the Nios II Integrated Development Environment
	Differences from the Nios II Software Build Tools
	Nios II IDE Makefiles
	Nios II IDE Terminology
	Altera Nios II Instruction Set Simulator
	Command-Line Tools
	Nios II IDE Command-Line Tools
	FS2 Command-Line Interface

	Getting Started with the Nios II IDE
	The Nios II IDE Workbench
	Perspectives, Editors, and Views

	EDS Development Flows and the Nios II IDE
	Nios II IDE Projects and Makefiles
	SBT Projects and Makefiles

	Creating a New Nios II IDE-Managed Project
	Building and Managing Projects
	Debug and Release Configurations

	Running and Debugging Programs
	Programming Flash

	Developing Software with the Nios II IDE
	Using the HAL in an IDE Project
	Generated Files
	generated.x
	generated.gdb
	alt_main.c

	System Library Settings
	Reducing Code Footprint
	Paths to Hardware Abstraction Layer Files
	Overriding HAL Functions

	Device Drivers for Nios II IDE Projects
	Integrating a Device Driver in the HAL
	Device Driver Files for the HAL

	Overriding the Default Device Drivers

	Exception Handling in a Nios II IDE Project
	Software Trap Handling
	Advanced Exceptions
	Using the Unimplemented Instruction Handler

	Configuring MicroC/OS-II Projects with the Nios II IDE
	MicroC/OS-II General Options
	Event Flag Settings
	Mutex Settings
	Semaphore Settings
	Mailbox Settings
	Queue Settings
	Memory Management Settings
	Miscellaneous Settings
	Task Management Settings
	Time Management Settings
	Timer Management Settings

	Using NicheStack in a Nios II IDE Project
	get_mac_addr() and get_ip_addr()
	Configuring the NicheStack TCP/IP Stack in the Nios II IDE

	Porting Nios II IDE Projects to the SBT
	Converting a Nios II IDE Project
	Other Software Modules
	Custom Device Drivers and Software Components
	Precompiled Libraries and Non-HAL Device Drivers

	Using Your Converted Project

	Archiving Nios II IDE Software Projects
	Required Files
	Nios II Application Project Files
	Nios II BSP Project

	File Write Permissions

	Help System
	Document Revision History

