
 Draft for Review

Intel® Platform Innovation Framework
for EFI

Data Hub Subclass Design Guide

Draft for Review

Version 0.9
April 1, 2004

Data Hub Subclass Design Guide Draft for Review

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2001-2004, Intel Corporation.

Intel order number xxxxxx-001

ii April 2004 Version 0.9

 Draft for Review

Revision History
Revision Revision History Date

0.9 First public release. 4/1/04

Version 0.9 April 2004 iii

Data Hub Subclass Design Guide Draft for Review

iv April 2004 Version 0.9

 Draft for Review

Version 0.9 April 2004 v

Contents

1 Introduction .. 7
Overview ... 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Pseudo-Code Conventions .. 8
Typographic Conventions... 8

2 Design Discussion ... 11
Overview ... 11
Interactions with the Data Hub.. 11
Rules and Guidelines.. 12

Rules ... 12
Record Design Guidelines.. 12

3 Code Definitions... 15
Introduction ... 15
Subclass Header... 16

EFI_SUBCLASS_TYPE1_HEADER .. 16
Macros .. 18

Macros ... 18
EFI_EXP_BASE10_DATA ... 18
EFI_EXP_BASE2_DATA ... 19
EFI_INTER_LINK_DATA ... 20
STRING_REF... 21

Data Hub Subclass Design Guide Draft for Review

vi April 2004 Version 0.9

 Draft for Review

1
Introduction

Overview
This specification defines the core code and design guidelines that are required for an
implementation of a new data hub subclass in the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework"). This specification does the following:
• Describes basic interactions with the data hub
• Defines the rules and guidelines for creating a new data hub subclass
• Provides code definitions for the data record subclass header and common macros that are

architecturally required by the Intel® Platform Innovation Framework for EFI Architecture
Specification

This specification complies with the System Management BIOS Reference Specification,
version 2.3.4.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Version 0.9 April 2004 7

Data Hub Subclass Design Guide Draft for Review

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

8 April 2004 Version 0.9

 Draft for Review Introduction

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

Version 0.9 April 2004 9

http://www.intel.com/technology/framework/spec.htm

Data Hub Subclass Design Guide Draft for Review

10 April 2004 Version 0.9

 Draft for Review

2
Design Discussion

Overview
This design guide serves as a starting document for a new subclass document. It describes elements
of data records that belong to a certain subclass and provides design guidelines when designing a
new data hub record. This document will reference material in the Intel® Platform Innovation
Framework for EFI Data Hub Specification. Not all data subclasses need to adhere to this design
guide.
The following definitions are included in this design guide:
• Header information
• Common macro definition
• Syntax
All of the above definitions are common to all data records in the data class. Definitions that are
specific to a subclass or to a specific data record will not be included in this specification. See Code
Definitions for the definitions listed above.

Interactions with the Data Hub
As a repository of data, the data hub interacts with two types of agents:
• Data producers
• Data consumers
The data hub itself does not examine or otherwise interpret the deposited contents of producer-
specific data. It merely provides storage, notification, and retrieval services to producers and
consumers of data.
Records in the data hub constitute a database. Particular consumer interpretation—such as System
Management BIOS (SMBIOS), for example—could be regarded as a specialized view of the
database.
Example producers are device drivers depositing information about hardware—for example, a
processor driver depositing information about system processors, a memory driver depositing
information about system main RAM physical and logical topology and other provisions, and so on.
The following are example consumers:
• SMBIOS
• Setup
• Shell commands
• System management
• Other components and utilities

Version 0.9 April 2004 11

Data Hub Subclass Design Guide Draft for Review

Rules and Guidelines

Rules
The following rules apply when creating a new data record or data subclass:
• A system is not required to have all the data records (RecordType) defined in a subclass

specification.
• A certain record number can be declared multiple times because the header information will

determine to which Instance, SubInstance, and ProducerName the data record refers.
• The data producer can describe the same data record (the same RecordType, Instance,

SubInstance, and ProducerName) more than once if the previous data record needs to be
updated.

The data hub driver will log all the records. The consumers need to consider that data producers are
allowed to create a new data record with the same header information to update the previous data
record.

Record Design Guidelines

Record Design Guidelines
This section provides guidelines that must be followed when designing a new data hub record.
These guidelines apply retroactively. If existing code does not comply with the guidelines, the code
must be changed to bring it into compliance.

 NOTE
Not following these guidelines may result in unknown behavior.

Alignment
Fields in a data hub record should be aligned at their natural boundaries. For example, a field of
type UINT64 must be aligned at 8 bytes. Arrays of elements must be aligned only at a single
element size. For example, a Unicode string with a character size of 16 bits must be aligned at
2 bytes.
This alignment could be achieved by properly arranging the fields’ locations within the structure
and/or by padding larger fields.
Provided that no packing is in effect (the #pragma pack() directive in C), the compiler might
satisfactory align structured fields.
Note that this requirement precludes designing records that map one-to-one to some SMBIOS
types. In such a case, the SMBIOS code would translate the data hub record to its own specific
structures.

12 April 2004 Version 0.9

 Draft for Review Design Discussion

Content and Structure
The amount and granularity of information presented by a producer should be a sum of the data
needs of all known, and possibly anticipated, consumers. The information may be contained in a
single record or in multiple records. It is the consumer’s responsibility to extract the correct record
or set of records that will satisfy the consumer’s needs for information.
It is possible and allowable that, while observing these guidelines, a data hub record structure can
be designed to be one-to-one—i.e., identical, with some specific consumer structure. In such cases,
the consumer could copy the data directly to its specific structures, and it is permissible that some
of the data structures may look like a "copy" from other specifications.

Location of Record Declaration Files
Data hub data record structures should be self-contained and declared in declaration files (in .h files
in the case of the C language) that are separate from producers and consumers.
These files should not be part of the consumer or producer code. They should be available at build
time to all potential consumers, even if no relevant producer is part of, or even available at, the
build time.
At the time of this document, the following is the location for these files:
DXE\Guid\DataHubRecords.
At boot services runtime, a consumer would need to handle a potential situation where the data
hub does not contain the requested records.
Conversely, the producer should not rely on any consumer code, yet it should be able to build and
run without any consumer code being available at build and run times.
For example, a properly defined data hub record will not contain any references to the SMBIOS
declarations.

Version 0.9 April 2004 13

Data Hub Subclass Design Guide Draft for Review

14 April 2004 Version 0.9

 Draft for Review

3
Code Definitions

Introduction
This section contains the basic definitions of the data hub subclass and macros that are common to
all data hub records. The following data types and macros are defined in this section:
• EFI_SUBCLASS_TYPE1_HEADER
• EFI_EXP_BASE10_DATA
• EFI_EXP_BASE2_DATA
• EFI_INTER_LINK_DATA

Version 0.9 April 2004 15

Data Hub Subclass Design Guide Draft for Review

Subclass Header

EFI_SUBCLASS_TYPE1_HEADER

Summary
Each data record that is a member of some subclass starts with a standard header of type
EFI_SUBCLASS_TYPE1_HEADER.

Prototype
typedef struct {
 UINT32 Version;
 UINT32 HeaderSize;
 UINT16 Instance;
 UINT16 SubInstance;
 UINT32 RecordType;
} EFI_SUBCLASS_TYPE1_HEADER;

Parameters
Version

The version of the specification to which a specific subclass data record adheres.
HeaderSize

The size in bytes of this data class header.
Instance

The instance number of the subclass with the same ProducerName. This number is
applicable in cases where multiple subclass instances that were produced by the same
driver exist in the system. This entry is 1 based; 0 means Reserved and -1 means Not
Applicable. All data consumer drivers should be able to handle all the possible values
of Instance, including Not Applicable and Reserved.

SubInstance

The instance number of the RecordType for the same Instance. This number is
applicable in cases where multiple instances of the RecordType exist for a specific
Instance. This entry is 1 based; 0 means Reserved and -1 means Not Applicable.
All data consumer drivers should be able to handle all the possible values of
SubInstance, including Not Applicable and Reserved.

RecordType

The record number for the data record being specified. The numbering scheme and
definition is defined in the specific subclass specification.

16 April 2004 Version 0.9

 Draft for Review Code Definitions

Description
Each data record that is a member of some subclass starts with a standard header of type
EFI_SUBCLASS_TYPE1_HEADER. This header is only a guideline and applicable only to a data
subclass that is producing SMBIOS data records. A subclass can start with a different header if
needed.
Instance and SubInstance may not be applicable in some cases. Also, certain
RecordTypes may not be applicable for specific implementations of a subclass.

Version 0.9 April 2004 17

Data Hub Subclass Design Guide Draft for Review

Macros

Macros
The following definitions are common among data records and are defined here for reference.

EFI_EXP_BASE10_DATA

Summary
Provides a calculation for base-10 representations.

Prototype
typedef struct {
 INT16 Value;
 INT16 Exponent;
} EFI_EXP_BASE10_DATA;

Parameters
Value

The INT16 number by which to multiply the base-10 representation. For example, if
Value = 3, the calculation would be (3 * 10^Exponent).

Exponent

The INT16 number by which to raise the base-10 calculation. For example, when
used with this structure:
• Exponent = 3 means 103 (kilo).

• Exponent = 6 means 106 (mega).

• Exponent = -3 means 10-3 (milli).

Description
This macro provides a calculation for base-10 representations. Value and Exponent are each
INT16. It is signed to cover negative values and is 16 bits wide (15 bits for data and 1 bit for the
sign).

18 April 2004 Version 0.9

 Draft for Review Code Definitions

EFI_EXP_BASE2_DATA

Summary
Provides a calculation for base-2 representations.

Prototype
typedef struct {
 UINT16 Value;
 UINT16 Exponent;
} EFI_EXP_BASE2_DATA;

Parameters
Value

The INT16 number by which to multiply the base-2 representation. For example, if
Value = 3, the calculation would be (3 * 2^Exponent).

Exponent

The INT16 number by which to raise the base-2 calculation. For example, when
used with this structure:
• Exponent = 10 means 210 (1024, kilo).

• Exponent = 20 means 220 (1048576, mega).

Description
This macro provides a calculation for base-2 representations. Value and Exponent are each
INT16. It is 16 bits wide and is unsigned to mean nonnegative values.

Version 0.9 April 2004 19

Data Hub Subclass Design Guide Draft for Review

EFI_INTER_LINK_DATA

Summary
Links data records in the same subclass.

Prototype
typedef struct {
 EFI_GUID ProducerName;
 UINT16 Instance;
 UINT16 SubInstance;
} EFI_INTER_LINK_DATA;

Parameters
ProducerName

An EFI_GUID that identifies the component that produced this data record. Type
EFI_GUID is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

Instance

The instance number of the subclass with the same ProducerName. This number is
applicable in cases where multiple subclass instances that were produced by the same
driver exist in the system. This entry is 1 based; 0 means Reserved and -1 means Not
Applicable. All data consumer drivers should be able to handle all the possible values
of Instance, including Not Applicable and Reserved.

SubInstance

The instance number of the RecordType for the same Instance. This number is
applicable in cases where multiple instances of the RecordType exist for a specific
Instance. This entry is 1 based; 0 means Reserved and -1 means Not Applicable.
All data consumer drivers should be able to handle all the possible values of
SubInstance, including Not Applicable and Reserved.

Description
This structure is used to link data records in the same subclasses. A data record is defined as a link
to another data record in the same subclass using this structure.

20 April 2004 Version 0.9

 Draft for Review Code Definitions

STRING_REF

Summary
Defines the string to be manipulated.

Description
A string reference (STRING_REF) is a UINT16 value defining a string to be manipulated. See the
Intel® Platform Innovation Framework for EFI Human Interface Infrastructure Specification for
the definition.

Version 0.9 April 2004 21

	Intel® Platform Innovation Framework for EFI Data Hub Subclass Design Guide
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Overview
	Interactions with the Data Hub
	Rules and Guidelines
	Rules
	Record Design Guidelines
	Record Design Guidelines
	Alignment
	Content and Structure
	Location of Record Declaration Files

	3. Code Definitions
	Introduction
	Subclass Header
	EFI_SUBCLASS_TYPE1_HEADER

	Macros
	Macros
	EFI_EXP_BASE10_DATA
	EFI_EXP_BASE2_DATA
	EFI_INTER_LINK_DATA
	STRING_REF

